List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8355325/publications.pdf Version: 2024-02-01

Ιιανιτιν Γιιι

#	Article	IF	CITATIONS
1	A Novel Ultra‣ensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect. Advanced Science, 2019, 6, 1900310.	5.6	183
2	Unraveling the Catalytic Mechanism of Co ₃ O ₄ for the Oxygen Evolution Reaction in a Li–O ₂ Battery. ACS Catalysis, 2015, 5, 73-81.	5.5	140
3	Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. National Science Review, 2018, 5, 327-341.	4.6	129
4	Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nature Communications, 2020, 11, 2253.	5.8	112
5	Auto-optimizing Hydrogen Evolution Catalytic Activity of ReS ₂ through Intrinsic Charge Engineering. ACS Nano, 2018, 12, 4486-4493.	7.3	111
6	Engineering Metallic Heterostructure Based on Ni ₃ N and 2Mâ€MoS ₂ for Alkaline Water Electrolysis with Industryâ€Compatible Current Density and Stability. Advanced Materials, 2022, 34, e2108505.	11.1	104
7	Facet-Dependent Electrocatalytic Performance of Co ₃ O ₄ for Rechargeable Li–O ₂ Battery. Journal of Physical Chemistry C, 2015, 119, 4516-4523.	1.5	99
8	Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O ₂ Battery. Journal of the American Chemical Society, 2015, 137, 13572-13579.	6.6	92
9	Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution. Nature Communications, 2021, 12, 5960.	5.8	86
10	Partialâ€Singleâ€Atom, Partialâ€Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution. Advanced Science, 2021, 8, 2001881.	5.6	85
11	Ultrathin Defective C–N Coating to Enable Nanostructured Li Plating for Li Metal Batteries. ACS Nano, 2020, 14, 1866-1878.	7.3	83
12	Activating Aromatic Rings as Na-Ion Storage Sites to Achieve High Capacity. CheM, 2018, 4, 2463-2478.	5.8	82
13	B-Doped Graphene as Catalyst To Improve Charge Rate of Lithium–Air Battery. Journal of Physical Chemistry C, 2014, 118, 22412-22418.	1.5	81
14	Defectâ€Concentrationâ€Mediated Tâ€Nb ₂ O ₅ Anodes for Durable and Fastâ€Charging Liâ€Ion Batteries. Advanced Functional Materials, 2022, 32, 2107060.	7.8	68
15	Green and Sensitive Flexible Semiconductor SERS Substrates: Hydrogenated Black TiO ₂ Nanowires. ACS Applied Nano Materials, 2018, 1, 4516-4527.	2.4	60
16	Shallow-layer pillaring of a conductive polymer in monolithic grains to drive superior zinc storage <i>via</i> a cascading effect. Energy and Environmental Science, 2020, 13, 3149-3163.	15.6	57
17	Non onjugated Dicarboxylate Anode Materials for Electrochemical Cells. Angewandte Chemie - International Edition, 2018, 57, 8865-8870.	7.2	52
			L L 10 -

Bond Electronegativity as Hydrogen Evolution Reaction Catalyst Descriptor for Transition Metal (TM) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
19	Theoretical and Experimental Studies of Ti ₃ C ₂ MXene for Surface-Enhanced Raman Spectroscopy-Based Sensing. ACS Omega, 2020, 5, 26486-26496.	1.6	44
20	Identifying Metallic Transition-Metal Dichalcogenides for Hydrogen Evolution through Multilevel High-Throughput Calculations and Machine Learning. Journal of Physical Chemistry Letters, 2021, 12, 2102-2111.	2.1	43
21	Cyclic Ether–Water Hybrid Electrolyte-Guided Dendrite-Free Lamellar Zinc Deposition by Tuning the Solvation Structure for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 40638-40647.	4.0	40
22	Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites. Science Advances, 2022, 8, eabj7698.	4.7	37
23	Three-Dimensional Fast Na-Ion Transport in Sodium Titanate Nanoarchitectures via Engineering of Oxygen Vacancies and Bismuth Substitution. ACS Nano, 2021, 15, 13604-13615.	7.3	36
24	Dynamic coordination transformation of active sites in single-atom MoS ₂ catalysts for boosted oxygen evolution catalysis. Energy and Environmental Science, 2022, 15, 2071-2083.	15.6	33
25	Triple Conductive Wiring by Electron Doping, Chelation Coating and Electrochemical Conversion in Fluffy Nb ₂ O ₅ Anodes for Fastâ€Charging Liâ€Ion Batteries. Advanced Science, 2022, 9, .	5.6	33
26	Reducing the charge overpotential of Li–O ₂ batteries through band-alignment cathode design. Energy and Environmental Science, 2020, 13, 2540-2548.	15.6	30
27	Robustness-Heterogeneity-Induced Ultrathin 2D Structure in Li Plating for Highly Reversible Li–Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 46132-46145.	4.0	29
28	Immobilizing an organic electrode material through π–π interaction for high-performance Li-organic batteries. Journal of Materials Chemistry A, 2019, 7, 22398-22404.	5.2	23
29	Niobium pentoxide ultra-thin nanosheets: A photocatalytic degradation and recyclable surface-enhanced Raman scattering substrate. Applied Surface Science, 2020, 509, 145376.	3.1	21
30	Secondary Bonding Channel Design Induces Intercalation Pseudocapacitance toward Ultrahighâ€Capacity and Highâ€Rate Organic Electrodes. Advanced Materials, 2021, 33, e2104039.	11.1	18
31	Tight bonding and high-efficiency utilization of S–S moieties to enable ultra-stable and high-capacity alkali-metal conversion batteries. Journal of Materials Chemistry A, 2021, 9, 6160-6171.	5.2	17
32	How inactive d0 transition metal controls anionic redox in disordered Li-rich oxyfluoride cathodes. Energy Storage Materials, 2020, 32, 253-260.	9.5	16
33	Surface Stability and Morphology of Calcium Phosphate Tuned by pH Values and Lactic Acid Additives: Theoretical and Experimental Study. ACS Applied Materials & Interfaces, 2022, 14, 4836-4851.	4.0	16
34	Relieving the "Sudden Death―of Li–O ₂ Batteries by Grafting an Antifouling Film on Cathode Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 14753-14758.	4.0	15
35	Influence of Cu ²⁺ doping concentration on the catalytic activity of Cu _x Co _{3â^x} O ₄ for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 18569-18576.	5.2	13
36	Stabilizing Low-Coordinated O Ions To Operate Cationic and Anionic Redox Chemistry of Li-Ion Battery Materials. ACS Applied Materials & Amp; Interfaces, 2019, 11, 37768-37778.	4.0	13

#	Article	IF	CITATIONS
37	Maximizing ionic transport of Li1+xAlxTi2-xP3O12 electrolytes for all-solid-state lithium-ion storage: A theoretical study. Journal of Materials Science and Technology, 2021, 73, 45-51.	5.6	12
38	Surface Electronegativity as an Activity Descriptor to Screen Oxygen Evolution Reaction Catalysts of Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2020, 12, 27166-27175.	4.0	12
39	Tailoring the redox-active transition metal content to enhance cycling stability in cation-disordered rock-salt oxides. Energy Storage Materials, 2021, 43, 275-283.	9.5	11
40	Cooperative Effect of Multiple Active Sites and Hierarchical Chemical Bonds in Metal–Organic Compounds for Improving Cathode Performance. ACS Energy Letters, 2020, 5, 477-485.	8.8	10
41	Alkaline-earth metal substitution stabilizes the anionic redox of Li-rich oxides. Journal of Materials Chemistry A, 2021, 9, 10364-10373.	5.2	10
42	Boosting the transport kinetics of free-standing SnS ₂ @Carbon nanofibers by electronic structure modulation for advanced lithium storage. Journal of Materials Chemistry A, 2022, 10, 9468-9481.	5.2	9
43	The critical role of oxygen-evolution kinetics in the electrochemical stability of oxide superionic conductors. Journal of Materials Chemistry A, 2019, 7, 17008-17013.	5.2	8
44	Vacancy-induced anion and cation redox chemistry in cation-deficient F-doped anatase TiO2. Journal of Materials Chemistry A, 2020, 8, 20393-20401.	5.2	8
45	Bambooâ€Based Biomaterials for Cell Transportation and Bone Integration. Advanced Healthcare Materials, 2022, 11, e2200287.	3.9	8
46	Theoretical Study of Fast Calculation of Damping Loss Factors for Rubber Polymers. Journal of Physical Chemistry Letters, 2020, 11, 6025-6031.	2.1	7
47	Optimized electron occupancy of solid-solution transition metals for suppressing the oxygen evolution of Li ₂ MnO ₃ . Journal of Materials Chemistry A, 2021, 9, 9337-9346.	5.2	7
48	Programmed self-assembly of enzyme activity-inhibited nanomedicine for augmenting chemodynamic tumor nanotherapy. Nanoscale, 2022, 14, 6171-6183.	2.8	6
49	Multiscale computations and artificial intelligent models of electrochemical performance in Liâ€ion battery materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	6
50	Predicting Li-Rich Layered Oxide Compounds as High-Conductivity and Stable Solid Electrolytes. ACS Energy Letters, 2021, 6, 3793-3800.	8.8	5
51	Origin of multiple voltage plateaus in P2-type sodium layered oxides. Materials Horizons, 2022, 9, 1460-1467.	6.4	5
52	Effect of Coolant Crossflow on Film Cooling Effectiveness of Diffusion Slot Hole With and Without Ribs. Journal of Turbomachinery, 2022, 144, .	0.9	5
53	Theoretical studies of a 3D-to-planar structural transition in SinAl5â^'n+1,0,â^'1(n = 0–5) clusters. RSC Advances, 2015, 5, 13923-13929.	1.7	3
54	Electrochemical Activity of Positive Electrode Material of P2-Na <i>_x</i> [Mg _{0.33} Mn _{0.67}]O ₂ Sodium Ion Battery. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 623.	0.6	3

#	Article	IF	CITATIONS
55	Achieving fast ionic conductivity and high electrochemical stability through polyhedral structure design. Energy Storage Materials, 2022, 47, 70-78.	9.5	2
56	Assembling organic–inorganic building blocks for high-capacity electrode design. Materials Horizons, 2021, 8, 1825-1834.	6.4	1
57	Critical Role of Interfacial Charge Transfer in Reducing Charge Potential of Li–O2 Battery. Journal of Physical Chemistry C, 0, , .	1.5	1