Joanna Sulkowsk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8355016/publications.pdf Version: 2024-02-01

IOANNA SULKOWSK

#	Article	IF	CITATIONS
1	PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Research, 2022, 50, D534-D542.	6.5	46
2	Topoly: Python package to analyze topology of polymers. Briefings in Bioinformatics, 2021, 22, .	3.2	32
3	SARS-CoV-2 Papain-Like Protease Potential Inhibitors—In Silico Quantitative Assessment. International Journal of Molecular Sciences, 2021, 22, 3957.	1.8	19
4	Slipknotted and unknotted monovalent cation-proton antiporters evolved from a common ancestor. PLoS Computational Biology, 2021, 17, e1009502.	1.5	5
5	Lasso Proteins—Unifying Cysteine Knots and Miniproteins. Polymers, 2021, 13, 3988.	2.0	3
6	Knot_pull—python package for biopolymer smoothing and knot detection. Bioinformatics, 2020, 36, 953-955.	1.8	8
7	Genus for biomolecules. Nucleic Acids Research, 2020, 48, D1129-D1135.	6.5	6
8	GLN: a method to reveal unique properties of lasso type topology in proteins. Scientific Reports, 2020, 10, 15186.	1.6	6
9	Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. PLoS Computational Biology, 2020, 16, e1007904.	1.5	13
10	Mg ²⁺ -Dependent Methyl Transfer by a Knotted Protein: A Molecular Dynamics Simulation and Quantum Mechanics Study. ACS Catalysis, 2020, 10, 8058-8068.	5.5	15
11	The Folding of Knotted Proteins: Distinguishing the Distinct Behavior of Shallow and Deep Knots. Israel Journal of Chemistry, 2020, 60, 713-724.	1.0	5
12	On folding of entangled proteins: knots, lassos, links and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi>î,</mml:mi>-curves. Current Opinion in Structural Biology, 2020, 60_131-141</mml:math 	2.6	52
13	Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.		0
14	Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.		0
15	Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.		0
16	Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.		0
17	Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.		0
18	Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020,		0

⁸ 16, e1007904.

JOANNA SULKOWSK

#	Article	IF	CITATIONS
19	Defining and detecting links in chromosomes. Scientific Reports, 2019, 9, 11753.	1.6	5
20	PyLink: a PyMOL plugin to identify links. Bioinformatics, 2019, 35, 3166-3168.	1.8	9
21	Supercoiling in a Protein Increases its Stability. Physical Review Letters, 2019, 123, 138102.	2.9	8
22	Statistical Properties of Lasso-Shape Polymers and Their Implications for Complex Lasso Proteins Function. Polymers, 2019, 11, 707.	2.0	7
23	PconsFam: An Interactive Database of Structure Predictions of Pfam Families. Journal of Molecular Biology, 2019, 431, 2442-2448.	2.0	14
24	DCA-MOL: A PyMOL Plugin To Analyze Direct Evolutionary Couplings. Journal of Chemical Information and Modeling, 2019, 59, 625-629.	2.5	5
25	Proteins' Knotty Problems. Journal of Molecular Biology, 2019, 431, 244-257.	2.0	36
26	KnotProt 2.0: a database of proteins with knots and other entangled structures. Nucleic Acids Research, 2019, 47, D367-D375.	6.5	70
27	GapRepairer: a server to model a structural gap and validate it using topological analysis. Bioinformatics, 2018, 34, 3300-3307.	1.8	10
28	Entangled Proteins: Knots, Slipknots, Links, and Lassos. Springer Series in Solid-state Sciences, 2018, , 201-226.	0.3	4
29	Genus trace reveals the topological complexity and domain structure of biomolecules. Scientific Reports, 2018, 8, 17537.	1.6	5
30	KnotGenome:Âa server to analyze entanglements of chromosomes. Nucleic Acids Research, 2018, 46, W17-W24.	6.5	10
31	The APS-bracket – A topological tool to classify lasso proteins, RNAs and other tadpole-like structures. Reactive and Functional Polymers, 2018, 132, 19-25.	2.0	2
32	Protein Knotting by Active Threading of Nascent Polypeptide Chain Exiting from the Ribosome Exit Channel. Journal of Physical Chemistry B, 2018, 122, 11616-11625.	1.2	36
33	The exclusive effects of chaperonin on the behavior of proteins with 52 knot. PLoS Computational Biology, 2018, 14, e1005970.	1.5	23
34	Topological knots and links in proteins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3415-3420.	3.3	101
35	PyLasso: a PyMOL plugin to identify lassos. Bioinformatics, 2017, 33, 3819-3821.	1.8	23
36	TrmD. The Enzymes, 2017, 41, 89-115.	0.7	24

JOANNA SULKOWSK

#	Article	IF	CITATIONS
37	LinkProt: a database collecting information about biological links. Nucleic Acids Research, 2017, 45, D243-D249.	6.5	38
38	To Tie or Not to Tie? That Is the Question. Polymers, 2017, 9, 454.	2.0	45
39	Knotting and unknotting proteins in the chaperonin cage: Effects of the excluded volume. PLoS ONE, 2017, 12, e0176744.	1.1	21
40	Complex lasso: new entangled motifs in proteins. Scientific Reports, 2016, 6, 36895.	1.6	73
41	Methyl transfer by substrate signaling from a knotted protein fold. Nature Structural and Molecular Biology, 2016, 23, 941-948.	3.6	74
42	LassoProt: server to analyze biopolymers with lassos. Nucleic Acids Research, 2016, 44, W383-W389.	6.5	50
43	In Search of Functional Advantages of Knots in Proteins. PLoS ONE, 2016, 11, e0165986.	1.1	51
44	Prediction of the optimal set of contacts to fold the smallest knotted protein. Journal of Physics Condensed Matter, 2015, 27, 354109.	0.7	19
45	KnotProt: a database of proteins with knots and slipknots. Nucleic Acids Research, 2015, 43, D306-D314.	6.5	159
46	Pierced Lasso Bundles Are a New Class of Knot-like Motifs. PLoS Computational Biology, 2014, 10, e1003613.	1.5	41
47	Connecting Thermal and Mechanical Protein (Un)folding Landscapes. Biophysical Journal, 2014, 107, 2950-2961.	0.2	36
48	Identifying knots in proteins. Biochemical Society Transactions, 2013, 41, 533-537.	1.6	65
49	Knotting a Protein in Explicit Solvent. Journal of Physical Chemistry Letters, 2013, 4, 3570-3573.	2.1	61
50	Hysteresis as a Marker for Complex, Overlapping Landscapes in Proteins. Journal of Physical Chemistry Letters, 2013, 4, 180-188.	2.1	52