Garret M Miyake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8354837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chemical Reviews, 2022, 122, 1830-1874.	23.0	136
2	Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chemical Reviews, 2022, 122, 5476-5518.	23.0	106
3	Phenoxazineâ€Sensitized CO ₂ â€toâ€CO Reduction with an Iron Porphyrin Catalyst: A Redox Propertiesâ€Catalytic Performance Study. ChemPhotoChem, 2022, 6, .	1.5	8
4	Effects of the Chalcogenide Identity in <i>N</i> â€Aryl Phenochalcogenazine Photoredox Catalysts. ChemCatChem, 2022, 14, .	1.8	4
5	Removal of photoredox catalysts from polymers synthesized by organocatalyzed atom transfer radical polymerization. Journal of Polymer Science, 2022, 60, 2747-2755.	2.0	1
6	Structure–property relationships of core-substituted diaryl dihydrophenazine organic photoredox catalysts and their application in O-ATRP. Polymer Chemistry, 2021, 12, 6110-6122.	1.9	3
7	Synthesis, Characterization, and Reactivity of N-Alkyl Phenoxazines in Organocatalyzed Atom Transfer Radical Polymerization. ACS Macro Letters, 2021, 10, 453-459.	2.3	14
8	Interrogation of O-ATRP Activation Conducted by Singlet and Triplet Excited States of Phenoxazine Photocatalysts. Journal of Physical Chemistry A, 2021, 125, 3109-3121.	1.1	14
9	Radical Addition to <i>N</i> , <i>N</i> -Diaryl Dihydrophenazine Photoredox Catalysts and Implications in Photoinduced Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules, 2021, 54, 4507-4516.	2.2	27
10	Radical Cations of Phenoxazine and Dihydrophenazine Photoredox Catalysts and Their Role as Deactivators in Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules, 2021, 54, 4726-4738.	2.2	20
11	Mechanics, optics, and thermodynamics of water transport in chemically modified transparent wood composites. Composites Science and Technology, 2021, 208, 108737.	3.8	12
12	Carbon-Electrode-Mediated Electrochemical Synthesis of Hypervalent Iodine Reagents Using Water as the O-Atom Source. ACS Sustainable Chemistry and Engineering, 2021, 9, 10453-10467.	3.2	6
13	Mechanical evaluation of 3D printed biomimetic non-Euclidean saddle geometries mimicking the mantis shrimp. Bioinspiration and Biomimetics, 2021, 16, 056002.	1.5	2
14	Unconventional Reactivity of Ethynylbenziodoxolone Reagents and Thiols: Scope and Mechanism. Chemistry - A European Journal, 2020, 26, 2386-2394.	1.7	28
15	Designing High-Triplet-Yield Phenothiazine Donor–Acceptor Complexes for Photoredox Catalysis. Journal of Physical Chemistry A, 2020, 124, 817-823.	1.1	29
16	Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers. Angewandte Chemie - International Edition, 2020, 59, 3209-3217.	7.2	98
17	Solvent Effects and Side Reactions in Organocatalyzed Atom Transfer Radical Polymerization for Enabling the Controlled Polymerization of Acrylates Catalyzed by Diaryl Dihydrophenazines. Macromolecules, 2020, 53, 9208-9219.	2.2	24
18	Organocatalyzed Birch Reduction Driven by Visible Light. Journal of the American Chemical Society, 2020, 142, 13573-13581.	6.6	144

#	Article	IF	CITATIONS
19	Impacts of performing electrolysis during organocatalyzed atom transfer radical polymerization. Polymer Chemistry, 2020, 11, 4978-4985.	1.9	7
20	Organocatalyzed Photoredox Radical Ring-Opening Polymerization of Functionalized Vinylcyclopropanes. Macromolecules, 2020, 53, 8352-8359.	2.2	15
21	Impact of backbone composition on homopolymer dynamics and brush block copolymer self-assembly. Polymer Chemistry, 2020, 11, 7147-7158.	1.9	10
22	The effect of plasticizers on thermoplastic starch films developed from the indigenous Ethiopian tuber crop Anchote (Coccinia abyssinica) starch. International Journal of Biological Macromolecules, 2020, 155, 581-587.	3.6	61
23	Titelbild: Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers (Angew. Chem. 8/2020). Angewandte Chemie, 2020, 132, 2937-2937.	1.6	0
24	Bromine Radical Catalysis by Energy Transfer Photosensitization. ACS Catalysis, 2020, 10, 2609-2614.	5.5	48
25	Scalable and Phosphine-Free Conversion of Alcohols to Carbon–Heteroatom Bonds through the Blue Light-Promoted Iodination Reaction. Journal of Organic Chemistry, 2020, 85, 3717-3727.	1.7	4
26	Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers. Angewandte Chemie, 2020, 132, 3235-3243.	1.6	25
27	Comparison of physicochemical properties of indigenous Ethiopian tuber crop (Coccinia abyssinica) starch with commercially available potato and wheat starches. International Journal of Biological Macromolecules, 2019, 140, 43-48.	3.6	22
28	3D printing using powder melt extrusion. Additive Manufacturing, 2019, 29, 100811.	1.7	14
29	Optical Properties and Mechanical Modeling of Acetylated Transparent Wood Composite Laminates. Materials, 2019, 12, 2256.	1.3	17
30	Controlling Polymer Composition in Organocatalyzed Photoredox Radical Ring-Opening Polymerization of Vinylcyclopropanes. Journal of the American Chemical Society, 2019, 141, 13268-13277.	6.6	41
31	Energy Transfer to Ni-Amine Complexes in Dual Catalytic, Light-Driven C–N Cross-Coupling Reactions. Journal of the American Chemical Society, 2019, 141, 19479-19486.	6.6	118
32	Photoinduced Organocatalyzed Atom Transfer Radical Polymerization Using Low ppm Catalyst Loading. Macromolecules, 2019, 52, 747-754.	2.2	65
33	Effects of Naphthyl Connectivity on the Photophysics of Compact Organic Charge-Transfer Photoredox Catalysts. Journal of Physical Chemistry A, 2019, 123, 4727-4736.	1.1	41
34	Impact of the Pendant Group on the Chain Conformation and Bulk Properties of Norbornene Imide-Based Polymers. Macromolecules, 2019, 52, 3426-3434.	2.2	20
35	Guiding the Design of Organic Photocatalyst for PET-RAFT Polymerization: Halogenated Xanthene Dyes. Macromolecules, 2019, 52, 236-248.	2.2	105
36	What happens in the dark? Assessing the temporal control of photoâ€mediated controlled radical polymerizations. Journal of Polymer Science Part A, 2019, 57, 268-273.	2.5	81

#	Article	IF	CITATIONS
37	Phenothiazines, Dihydrophenazines, and Phenoxazines: Sustainable Alternatives to Precious-Metal-Based Photoredox Catalysts. Aldrichimica Acta, 2019, 52, 7-21.	4.0	17
38	Structure–Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts. Journal of the American Chemical Society, 2018, 140, 5088-5101.	6.6	202
39	Armâ€first synthesis of star polymers with polywedge arms using ringâ€opening metathesis polymerization and bifunctional crosslinkers. Journal of Polymer Science Part A, 2018, 56, 732-740.	2.5	9
40	Exploiting Charge-Transfer States for Maximizing Intersystem Crossing Yields in Organic Photoredox Catalysts. Journal of the American Chemical Society, 2018, 140, 4778-4781.	6.6	97
41	Synthesis of star polymers using organocatalyzed atom transfer radical polymerization through a core-first approach. Polymer Chemistry, 2018, 9, 1658-1665.	1.9	37
42	Visible-Light-Driven Conversion of CO ₂ to CH ₄ with an Organic Sensitizer and an Iron Porphyrin Catalyst. Journal of the American Chemical Society, 2018, 140, 17830-17834.	6.6	150
43	Light-Driven Intermolecular Charge Transfer Induced Reactivity of Ethynylbenziodoxol(on)e and Phenols. Journal of the American Chemical Society, 2018, 140, 12829-12835.	6.6	61
44	C–N Cross-Coupling via Photoexcitation of Nickel–Amine Complexes. Journal of the American Chemical Society, 2018, 140, 7667-7673.	6.6	176
45	<i>N</i> , <i>N</i> -Diaryl Dihydrophenazines as Photoredox Catalysts for PET-RAFT and Sequential PET-RAFT/O-ATRP. ACS Macro Letters, 2018, 7, 662-666.	2.3	73
46	Photoinduced Controlled Radical Polymerizations Performed in Flow: Methods, Products, and Opportunities. Chemistry of Materials, 2018, 30, 3931-3942.	3.2	69
47	Organocatalyzed Atom Transfer Radical Polymerization Catalyzed by Core Modified <i>N</i> -Aryl Phenoxazines Performed under Air. ACS Macro Letters, 2018, 7, 1016-1021.	2.3	45
48	Transition-Metal-Free, Visible-Light-Promoted C–S Cross-Coupling through Intermolecular Charge Transfer. Synlett, 2018, 29, 2449-2455.	1.0	15
49	Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers. ACS Nano, 2017, 11, 3052-3058.	7.3	160
50	Photochemical Synthesis of Oligomeric Amphiphiles from Alkyl Oxoacids in Aqueous Environments. Journal of the American Chemical Society, 2017, 139, 6946-6959.	6.6	26
51	Impact of Light Intensity on Control in Photoinduced Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules, 2017, 50, 4616-4622.	2.2	79
52	Organocatalyzed Atom Transfer Radical Polymerization: Perspectives on Catalyst Design and Performance. Macromolecular Rapid Communications, 2017, 38, 1700040.	2.0	121
53	Solvent effects on the intramolecular charge transfer character of <i>N</i> , <i>N</i> â€diaryl dihydrophenazine catalysts for organocatalyzed atom transfer radical polymerization. Journal of Polymer Science Part A, 2017, 55, 3017-3027.	2.5	56
54	Photoinduced Organocatalyzed Atom Transfer Radical Polymerization Using Continuous Flow. Macromolecules, 2017, 50, 2668-2674.	2.2	116

#	Article	IF	CITATIONS
55	Intramolecular Charge Transfer and Ion Pairing in <i>N,N</i> -Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2017, 139, 348-355.	6.6	207
56	Visible-Light-Promoted C–S Cross-Coupling via Intermolecular Charge Transfer. Journal of the American Chemical Society, 2017, 139, 13616-13619.	6.6	347
57	Polymers and Light. Macromolecular Rapid Communications, 2017, 38, 1700327.	2.0	17
58	Frontispiece: Strongly Reducing, Visibleâ€Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals. Chemistry - A European Journal, 2017, 23, .	1.7	1
59	Strongly Reducing, Visibleâ€Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals. Chemistry - A European Journal, 2017, 23, 10962-10968.	1.7	196
60	Organocatalyzed atom transfer radical polymerization driven by visible light. Science, 2016, 352, 1082-1086.	6.0	649
61	Organocatalyzed Atom Transfer Radical Polymerization Using <i>N</i> -Aryl Phenoxazines as Photoredox Catalysts. Journal of the American Chemical Society, 2016, 138, 11399-11407.	6.6	300
62	Atom Transfer Radical Polymerization of Functionalized Vinyl Monomers Using Perylene as a Visible Light Photocatalyst. Journal of Visualized Experiments, 2016, , e53571.	0.2	7
63	Synthesis and Reactivity of a Zwitterionic Palladium Allyl Complex Supported by a Perchlorinated Carboranyl Phosphine. Inorganic Chemistry, 2015, 54, 5142-5144.	1.9	32
64	Polymerizability of <i>Exo</i> â€methyleneâ€lactide toward vinyl addition and ring opening. Journal of Polymer Science Part A, 2015, 53, 1523-1532.	2.5	22
65	Stereocomplex Formation of Densely Grafted Brush Polymers. ACS Macro Letters, 2014, 3, 26-29.	2.3	30
66	Perylene as an Organic Photocatalyst for the Radical Polymerization of Functionalized Vinyl Monomers through Oxidative Quenching with Alkyl Bromides and Visible Light. Macromolecules, 2014, 47, 8255-8261.	2.2	297
67	Highly Ordered Dielectric Mirrors via the Self-Assembly of Dendronized Block Copolymers. Journal of the American Chemical Society, 2013, 135, 15609-15616.	6.6	77
68	Rapid self-assembly of brush block copolymers to photonic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14332-14336.	3.3	338
69	Precisely Tunable Photonic Crystals From Rapidly Selfâ€Assembling Brush Block Copolymer Blends. Angewandte Chemie - International Edition, 2012, 51, 11246-11248.	7.2	207
70	Synthesis of Isocyanate-Based Brush Block Copolymers and Their Rapid Self-Assembly to Infrared-Reflecting Photonic Crystals. Journal of the American Chemical Society, 2012, 134, 14249-14254.	6.6	216
71	Cinchona Alkaloids as Stereoselective Organocatalysts for the Partial Kinetic Resolution Polymerization of <i>rac</i> -Lactide. Macromolecules, 2011, 44, 4116-4124.	2.2	70
72	Synthesis of highly syndiotactic polymers by discrete catalysts or initiators. Polymer Chemistry, 2011, 2, 2462.	1.9	33

#	Article	IF	CITATIONS
73	Synthesis of helical poly(phenylacetylene)s bearing cinchona alkaloid pendants and their application to asymmetric organocatalysis. Journal of Polymer Science Part A, 2011, 49, 5192-5198.	2.5	49
74	Inside Cover: Alane-Based Classical and Frustrated Lewis Pairs in Polymer Synthesis: Rapid Polymerization of MMA and Naturally Renewable Methylene Butyrolactones into High-Molecular-Weight Polymers (Angew. Chem. Int. Ed. 52/2010). Angewandte Chemie - International Edition, 2010, 49, 10016-10016.	7.2	0
75	Effect of Polymer Tacticity on the Performance of Poly(<i>N</i> , <i>N</i> -dialkylacrylamide)s as Kinetic Hydrate Inhibitors. Energy & Fuels, 2010, 24, 2554-2562.	2.5	39
76	Stereospecific Polymerization of Chiral Oxazolidinone-Functionalized Alkenes. Macromolecules, 2010, 43, 7504-7514.	2.2	22
77	Living Polymerization of Naturally Renewable Butyrolactone-Based Vinylidene Monomers by Ambiphilic Silicon Propagators. Macromolecules, 2010, 43, 4902-4908.	2.2	92
78	Coordination polymerization of renewable butyrolactone-based vinyl monomers by lanthanide and early metal catalysts. Dalton Transactions, 2010, 39, 6710.	1.6	53
79	Metallocene-Mediated Asymmetric Coordination Polymerization of Polar Vinyl Monomers to Optically Active, Stereoregular Polymers. Macromolecules, 2008, 41, 3405-3416.	2.2	50
80	Asymmetric Coordination Polymerization of Acrylamides by Enantiomeric Metallocenium Ester Enolate Catalysts. Journal of the American Chemical Society, 2007, 129, 6724-6725.	6.6	53