
## Bruce A Mcclane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8354755/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe, 2018, 53, 5-10.                                                                                                                                                                        | 2.1 | 365       |
| 2  | Towards an understanding of the role of <i>Clostridium perfringens</i> toxins in human and animal disease. Future Microbiology, 2014, 9, 361-377.                                                                                                                    | 2.0 | 328       |
| 3  | Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens.<br>Genome Research, 2006, 16, 1031-1040.                                                                                                                         | 5.5 | 281       |
| 4  | Claudin-4: A new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin.<br>Gastroenterology, 2001, 121, 678-684.                                                                                                                          | 1.3 | 276       |
| 5  | Inactivation of the gene (cpe ) encoding Clostridium perfringens enterotoxin eliminates the ability of<br>two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal<br>loops. Molecular Microbiology, 1999, 33, 946-958. | 2.5 | 211       |
| 6  | Toxin Plasmids of Clostridium perfringens. Microbiology and Molecular Biology Reviews, 2013, 77, 208-233.                                                                                                                                                            | 6.6 | 204       |
| 7  | Comparative Experiments To Examine the Effects of Heating on Vegetative Cells and Spores of<br>Clostridium perfringens Isolates Carrying Plasmid Genes versus Chromosomal Enterotoxin Genes.<br>Applied and Environmental Microbiology, 2000, 66, 3234-3240.         | 3.1 | 175       |
| 8  | Evidence That the Enterotoxin Gene Can Be Episomal in <i>Clostridium perfringens</i> Isolates<br>Associated with Non-Food-Borne Human Gastrointestinal Diseases. Journal of Clinical Microbiology,<br>1998, 36, 30-36.                                               | 3.9 | 159       |
| 9  | Beta toxin is essential for the intestinal virulence of <i>Clostridium perfringens</i> type C disease<br>isolate CN3685 in a rabbit ileal loop model. Molecular Microbiology, 2008, 67, 15-30.                                                                       | 2.5 | 157       |
| 10 | Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins. Toxins, 2018, 10, 212.                                                                                                                                                           | 3.4 | 150       |
| 11 | Association of beta2 toxin production withClostridium perfringenstype A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Molecular Microbiology, 2005, 56, 747-762.                                                                      | 2.5 | 149       |
| 12 | Detection of Enterotoxigenic Clostridium perfringens Type A Isolates in American Retail Foods. Applied<br>and Environmental Microbiology, 2004, 70, 2685-2691.                                                                                                       | 3.1 | 145       |
| 13 | Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications. Toxins, 2016, 8, 73.                                                                                                                                                          | 3.4 | 132       |
| 14 | Construction of an Alpha Toxin Gene Knockout Mutant of Clostridium perfringens Type A by Use of a<br>Mobile Group II Intron. Applied and Environmental Microbiology, 2005, 71, 7542-7547.                                                                            | 3.1 | 129       |
| 15 | Genotyping of Enterotoxigenic Clostridium perfringens Fecal Isolates Associated with<br>Antibiotic-Associated Diarrhea and Food Poisoning in North America. Journal of Clinical<br>Microbiology, 2001, 39, 883-888.                                                  | 3.9 | 122       |
| 16 | Genotyping and Phenotyping of Beta2-Toxigenic Clostridium perfringens Fecal Isolates Associated with Gastrointestinal Diseases in Piglets. Journal of Clinical Microbiology, 2003, 41, 3584-3591.                                                                    | 3.9 | 116       |
| 17 | Further Comparison of Temperature Effects on Growth and Survival of Clostridium perfringens Type<br>A Isolates Carrying a Chromosomal or Plasmid-Borne Enterotoxin Gene. Applied and Environmental<br>Microbiology, 2006, 72, 4561-4568.                             | 3.1 | 107       |
| 18 | The Agr-Like Quorum-Sensing System Regulates Sporulation and Production of Enterotoxin and Beta2<br>Toxin by Clostridium perfringens Type A Non-Food-Borne Human Gastrointestinal Disease Strain F5603.<br>Infection and Immunity, 2011, 79, 2451-2459.              | 2.2 | 107       |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Enterotoxin Plasmid from Clostridium perfringens Is Conjugative. Infection and Immunity, 2001, 69, 3483-3487.                                                                                                                                                               | 2.2 | 102       |
| 20 | The complex interactions between Clostridium perfringens enterotoxin and epithelial tight junctions.<br>Toxicon, 2001, 39, 1781-1791.                                                                                                                                       | 1.6 | 101       |
| 21 | CaCo-2 Cells Treated with Clostridium perfringensEnterotoxin Form Multiple Large Complex Species,<br>One of Which Contains the Tight Junction Protein Occludin. Journal of Biological Chemistry, 2000,<br>275, 18407-18417.                                                 | 3.4 | 98        |
| 22 | Claudin-4 Overexpression in Epithelial Ovarian Cancer Is Associated with Hypomethylation and Is a<br>Potential Target for Modulation of Tight Junction Barrier Function Using a C-Terminal Fragment of<br>Clostridium perfringens Enterotoxin. Neoplasia, 2007, 9, 304-314. | 5.3 | 98        |
| 23 | The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cellular Microbiology, 2004, 7, 129-146.                                                                                  | 2.1 | 96        |
| 24 | Fatal Necrotizing Colitis Following a Foodborne Outbreak of Enterotoxigenic Clostridium perfringens Type A Infection. Clinical Infectious Diseases, 2005, 40, e78-e83.                                                                                                      | 5.8 | 94        |
| 25 | The effects ofClostridium perfringens enterotoxin on morphology, viability, and macromolecular synthesis in vero cells. Journal of Cellular Physiology, 1979, 99, 191-199.                                                                                                  | 4.1 | 92        |
| 26 | Structure of the Claudin-binding Domain of Clostridium perfringens Enterotoxin. Journal of<br>Biological Chemistry, 2008, 283, 268-274.                                                                                                                                     | 3.4 | 92        |
| 27 | Death Pathways Activated in CaCo-2 Cells by Clostridium perfringens Enterotoxin. Infection and Immunity, 2003, 71, 4260-4270.                                                                                                                                               | 2.2 | 91        |
| 28 | Clostridium perfringens Type E Animal Enteritis Isolates with Highly Conserved, Silent Enterotoxin<br>Gene Sequences. Infection and Immunity, 1998, 66, 4531-4536.                                                                                                          | 2.2 | 90        |
| 29 | Phenotypic Characterization of EnterotoxigenicClostridium perfringensIsolates from Non-foodborne<br>Human Gastrointestinal Diseases. Anaerobe, 1998, 4, 69-79.                                                                                                              | 2.1 | 89        |
| 30 | Clostridium perfringens toxin genotypes in the feces of healthy North Americans. Anaerobe, 2008, 14, 102-108.                                                                                                                                                               | 2.1 | 86        |
| 31 | Identification of a Prepore Large-Complex Stage in the Mechanism of Action of Clostridium perfringens Enterotoxin. Infection and Immunity, 2007, 75, 2381-2390.                                                                                                             | 2.2 | 85        |
| 32 | Dissecting the Contributions of Clostridium perfringens Type C Toxins to Lethality in the Mouse<br>Intravenous Injection Model. Infection and Immunity, 2006, 74, 5200-5210.                                                                                                | 2.2 | 83        |
| 33 | Pathogenicity and virulence of <i>Clostridium perfringens</i> . Virulence, 2021, 12, 723-753.                                                                                                                                                                               | 4.4 | 82        |
| 34 | Complete Sequencing and Diversity Analysis of the Enterotoxin-Encoding Plasmids in Clostridium<br>perfringens Type A Non-Food-Borne Human Gastrointestinal Disease Isolates. Journal of Bacteriology,<br>2006, 188, 1585-1598.                                              | 2.2 | 80        |
| 35 | Use of an EZ-Tn5-Based Random Mutagenesis System to Identify a Novel Toxin Regulatory Locus in<br>Clostridium perfringens Strain 13. PLoS ONE, 2009, 4, e6232.                                                                                                              | 2.5 | 80        |
| 36 | Clostridium perfringens enterotoxin. Microbial Pathogenesis, 1988, 4, 317-323.                                                                                                                                                                                              | 2.9 | 78        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Enterotoxic Clostridia. , 2006, , 698-752.                                                                                                                                                   |     | 78        |
| 38 | Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in<br>Caco-2 cells and claudin 4 fibroblast transfectants. Cellular Microbiology, 2007, 9, 2734-2755. | 2.1 | 77        |
| 39 | Structure of the Food-Poisoning Clostridium perfringens Enterotoxin Reveals Similarity to the Aerolysin-Like Pore-Forming Toxins. Journal of Molecular Biology, 2011, 413, 138-149.              | 4.2 | 76        |
| 40 | Clostridium perfringens enterotoxin acts by producing small molecule permeability alterations in plasma membranes. Toxicology, 1994, 87, 43-67.                                                  | 4.2 | 75        |
| 41 | An overview of Clostridium perfringens enterotoxin. Toxicon, 1996, 34, 1335-1343.                                                                                                                | 1.6 | 75        |
| 42 | Necrotic Enteritis-Derived Clostridium perfringens Strain with Three Closely Related Independently<br>Conjugative Toxin and Antibiotic Resistance Plasmids. MBio, 2011, 2, .                     | 4.1 | 75        |
| 43 | [15] Production, purification, and assay of Clostridium perfringens enterotoxin. Methods in Enzymology, 1988, 165, 94-103.                                                                       | 1.0 | 74        |
| 44 | Animal models to study the pathogenesis of human and animal Clostridium perfringens infections.<br>Veterinary Microbiology, 2015, 179, 23-33.                                                    | 1.9 | 73        |
| 45 | Genetic Characterization of Type A Enterotoxigenic Clostridium perfringens Strains. PLoS ONE, 2009,<br>4, e5598.                                                                                 | 2.5 | 73        |
| 46 | Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe, 2018, 53, 11-20.                                                                                     | 2.1 | 71        |
| 47 | Effects of <i>Clostridium perfringens</i> Beta-Toxin on the Rabbit Small Intestine and Colon.<br>Infection and Immunity, 2008, 76, 4396-4404.                                                    | 2.2 | 69        |
| 48 | A Novel Small Acid Soluble Protein Variant Is Important for Spore Resistance of Most Clostridium perfringens Food Poisoning Isolates. PLoS Pathogens, 2008, 4, e1000056.                         | 4.7 | 69        |
| 49 | Sialidases Affect the Host Cell Adherence and Epsilon Toxin-Induced Cytotoxicity of Clostridium perfringens Type D Strain CN3718. PLoS Pathogens, 2011, 7, e1002429.                             | 4.7 | 69        |
| 50 | New insights into the cytotoxic mechanisms of Clostridium perfringens enterotoxin. Anaerobe, 2004,<br>10, 107-114.                                                                               | 2.1 | 68        |
| 51 | Binding versus biological activity of Clostridium perfringens enterotoxin in Vero cells. Biochemical<br>and Biophysical Research Communications, 1979, 87, 497-504.                              | 2.1 | 67        |
| 52 | Clostridium perfringens Enterotoxin as a Novel-Targeted Therapeutic for Brain Metastasis. Cancer<br>Research, 2007, 67, 7977-7982.                                                               | 0.9 | 67        |
| 53 | Virulence Plasmid Diversity in Clostridium perfringens Type D Isolates. Infection and Immunity, 2007, 75, 2391-2398.                                                                             | 2.2 | 66        |
| 54 | Epsilon-Toxin Plasmids of <i>Clostridium perfringens</i> Type D Are Conjugative. Journal of Bacteriology, 2007, 189, 7531-7538.                                                                  | 2.2 | 66        |

| #  | Article                                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Characterization of Toxin Plasmids in <i>Clostridium perfringens</i> Type C Isolates. Infection and Immunity, 2010, 78, 4860-4869.                                                                                                                                                                                               | 2.2 | 66        |
| 56 | Multiplex PCR Genotyping Assay That Distinguishes between Isolates of Clostridium perfringens Type A<br>Carrying a Chromosomal Enterotoxin Gene ( cpe ) Locus, a Plasmid cpe Locus with an IS 1470 -Like<br>Sequence, or a Plasmid cpe Locus with an IS 1151 Sequence. Journal of Clinical Microbiology, 2004, 42,<br>1552-1558. | 3.9 | 65        |
| 57 | Characterization of membrane permeability alterations induced in vero cells by Clostridium perfringens enterotoxin. Biochimica Et Biophysica Acta - Biomembranes, 1980, 600, 974-985.                                                                                                                                            | 2.6 | 64        |
| 58 | <i>Clostridium perfringens</i> Sporulation and Sporulation-Associated Toxin Production.<br>Microbiology Spectrum, 2016, 4, .                                                                                                                                                                                                     | 3.0 | 64        |
| 59 | Organization of the Plasmid cpe Locus in Clostridium perfringens Type A Isolates. Infection and Immunity, 2002, 70, 4261-4272.                                                                                                                                                                                                   | 2.2 | 63        |
| 60 | Identification of a Claudin-4 Residue Important for Mediating the Host Cell Binding and Action of <i>Clostridium perfringens</i> Enterotoxin. Infection and Immunity, 2010, 78, 505-517.                                                                                                                                         | 2.2 | 63        |
| 61 | Comparative Biochemical and Immunocytochemical Studies Reveal Differences in the Effects of<br>Clostridium perfringens Enterotoxin on Polarized CaCo-2 CellsVersus Vero Cells. Journal of<br>Biological Chemistry, 2001, 276, 33402-33412.                                                                                       | 3.4 | 62        |
| 62 | Epsilon-Toxin Is Required for Most Clostridium perfringens Type D Vegetative Culture Supernatants To<br>Cause Lethality in the Mouse Intravenous Injection Model. Infection and Immunity, 2005, 73, 7413-7421.                                                                                                                   | 2.2 | 62        |
| 63 | Comparative Effects of Osmotic, Sodium Nitrite-Induced, and pH-Induced Stress on Growth and<br>Survival of Clostridium perfringens Type A Isolates Carrying Chromosomal or Plasmid-Borne<br>Enterotoxin Genes. Applied and Environmental Microbiology, 2006, 72, 7620-7625.                                                      | 3.1 | 62        |
| 64 | Evaluating the Involvement of Alternative Sigma Factors SigF and SigG in Clostridium perfringens Sporulation and Enterotoxin Synthesis. Infection and Immunity, 2010, 78, 4286-4293.                                                                                                                                             | 2.2 | 62        |
| 65 | Identification of a <i>Clostridium perfringens</i> Enterotoxin Region Required for Large Complex<br>Formation and Cytotoxicity by Random Mutagenesis. Infection and Immunity, 1999, 67, 5634-5641.                                                                                                                               | 2.2 | 62        |
| 66 | Characterization of Virulence Plasmid Diversity among <i>Clostridium perfringens</i> Type B Isolates.<br>Infection and Immunity, 2010, 78, 495-504.                                                                                                                                                                              | 2.2 | 60        |
| 67 | Use of <i>Clostridium perfringens</i> Enterotoxin and the Enterotoxin Receptor-Binding Domain<br>(C-CPE) for Cancer Treatment: Opportunities and Challenges. Journal of Toxicology, 2012, 2012, 1-9.                                                                                                                             | 3.0 | 60        |
| 68 | Osmotic stabilizers differentially inhibit permeability alterations induced in vero cells by Clostridium<br>Perfringens enterotoxin. Biochimica Et Biophysica Acta - Biomembranes, 1984, 777, 99-106.                                                                                                                            | 2.6 | 59        |
| 69 | Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production byClostridium perfringenstype C isolates. Cellular Microbiology, 2009, 11, 1306-1328.                                                                                                                                                   | 2.1 | 59        |
| 70 | Prevalence of Enterotoxigenic Clostridium perfringens Isolates in Pittsburgh (Pennsylvania) Area<br>Soils and Home Kitchens. Applied and Environmental Microbiology, 2007, 73, 7218-7224.                                                                                                                                        | 3.1 | 55        |
| 71 | Evidence that the Agrâ€like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of <i>Clostridium perfringens</i> type C isolate CN3685. Molecular Microbiology, 2012, 83, 179-194.                                                                                                             | 2.5 | 55        |
| 72 | CodY Is a Global Regulator of Virulence-Associated Properties for Clostridium perfringens Type D<br>Strain CN3718. MBio, 2013, 4, e00770-13.                                                                                                                                                                                     | 4.1 | 55        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Development and Application of a Mouse Intestinal Loop Model To Study the In Vivo Action of Clostridium perfringens Enterotoxin. Infection and Immunity, 2011, 79, 3020-3027.                                                                 | 2.2 | 54        |
| 74 | Both Epsilon-Toxin and Beta-Toxin Are Important for the Lethal Properties of Clostridium perfringens<br>Type B Isolates in the Mouse Intravenous Injection Model. Infection and Immunity, 2007, 75, 1443-1452.                                | 2.2 | 52        |
| 75 | Identification of Novel Clostridium perfringens Type E Strains That Carry an Iota Toxin Plasmid with a Functional Enterotoxin Gene. PLoS ONE, 2011, 6, e20376.                                                                                | 2.5 | 51        |
| 76 | Comparison of Virulence Plasmids among Clostridium perfringens Type E Isolates. Infection and Immunity, 2007, 75, 1811-1819.                                                                                                                  | 2.2 | 50        |
| 77 | Sequencing and Diversity Analyses Reveal Extensive Similarities between Some Epsilon-Toxin-Encoding Plasmids and the pCPF5603 <i>Clostridium perfringens</i> Enterotoxin Plasmid. Journal of Bacteriology, 2008, 190, 7178-7188.              | 2.2 | 50        |
| 78 | Development and Application of New Mouse Models To Study the Pathogenesis of <i>Clostridium perfringens</i> Type C Enterotoxemias. Infection and Immunity, 2009, 77, 5291-5299.                                                               | 2.2 | 50        |
| 79 | Clostridium perfringens type A–E toxin plasmids. Research in Microbiology, 2015, 166, 264-279.                                                                                                                                                | 2.1 | 50        |
| 80 | Evidence for a Prepore Stage in the Action of Clostridium perfringens Epsilon Toxin. PLoS ONE, 2011, 6, e22053.                                                                                                                               | 2.5 | 49        |
| 81 | The Sialidases of Clostridium perfringens Type D Strain CN3718 Differ in Their Properties and Sensitivities to Inhibitors. Applied and Environmental Microbiology, 2014, 80, 1701-1709.                                                       | 3.1 | 49        |
| 82 | Protective effects of osmotic stabilizers on morphological and permeability alterations induced in<br>vero cells by Clostridium perfringens enterotoxin. Biochimica Et Biophysica Acta - Biomembranes, 1981,<br>641, 401-409.                 | 2.6 | 48        |
| 83 | Noncytotoxic <i>Clostridium perfringens</i> Enterotoxin (CPE) Variants Localize CPE Intestinal<br>Binding and Demonstrate a Relationship between CPE-Induced Cytotoxicity and Enterotoxicity.<br>Infection and Immunity, 2008, 76, 3793-3800. | 2.2 | 48        |
| 84 | Enterotoxigenic <i>Clostridium perfringens</i> : Detection and Identification. Microbes and Environments, 2012, 27, 343-349.                                                                                                                  | 1.6 | 48        |
| 85 | Role of the Agr-Like Quorum-Sensing System in Regulating Toxin Production by Clostridium perfringens Type B Strains CN1793 and CN1795. Infection and Immunity, 2012, 80, 3008-3017.                                                           | 2.2 | 48        |
| 86 | Fine Mapping of the N-Terminal Cytotoxicity Region of Clostridium perfringens Enterotoxin by Site-Directed Mutagenesis. Infection and Immunity, 2004, 72, 6914-6923.                                                                          | 2.2 | 47        |
| 87 | Human Claudin-8 and -14 Are Receptors Capable of Conveying the Cytotoxic Effects of Clostridium perfringens Enterotoxin. MBio, 2013, 4, .                                                                                                     | 4.1 | 47        |
| 88 | Identification of a 50,000 Mr protein from rabbit brush border membranes that binds Clostridium perfringens enterotoxin. Biochemical and Biophysical Research Communications, 1983, 112, 1099-1105.                                           | 2.1 | 44        |
| 89 | C Terminus of <i>Clostridium perfringens</i> Enterotoxin Downregulates CLDN4 and Sensitizes<br>Ovarian Cancer Cells to Taxol and Carboplatin. Clinical Cancer Research, 2011, 17, 1065-1074.                                                  | 7.0 | 44        |
| 90 | CLOSTRIDIUM PERFRINGENS ENTEROTOXIN: STRUCTURE, ACTION AND DETECTION. Journal of Food Safety, 1991, 12, 237-252.                                                                                                                              | 2.3 | 43        |

| #   | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Genotypic and Phenotypic Characterization of Clostridium perfringens Isolates from Darmbrand<br>Cases in Post-World War II Germany. Infection and Immunity, 2012, 80, 4354-4363.                                                                                                 | 2.2 | 42        |
| 92  | Clostridium perfringens Sialidases: Potential Contributors to Intestinal Pathogenesis and Therapeutic<br>Targets. Toxins, 2016, 8, 341.                                                                                                                                          | 3.4 | 42        |
| 93  | Epsilon-Toxin Production by Clostridium perfringens Type D Strain CN3718 Is Dependent upon<br>the <i>agr</i> Operon but Not the VirS/VirR Two-Component Regulatory System. MBio, 2011, 2, .                                                                                      | 4.1 | 41        |
| 94  | Clostridium perfringens Epsilon Toxin Increases the Small Intestinal Permeability in Mice and Rats.<br>PLoS ONE, 2009, 4, e7065.                                                                                                                                                 | 2.5 | 41        |
| 95  | Development of a Duplex PCR Genotyping Assay for Distinguishing Clostridium perfringens Type A<br>Isolates Carrying Chromosomal Enterotoxin ( cpe ) Genes from Those Carrying Plasmid-Borne<br>Enterotoxin ( cpe ) Genes. Journal of Clinical Microbiology, 2003, 41, 1494-1498. | 3.9 | 40        |
| 96  | The interaction of Clostridium perfringens enterotoxin with receptor claudins. Anaerobe, 2016, 41, 18-26.                                                                                                                                                                        | 2.1 | 40        |
| 97  | Detection of Enterotoxigenic Clostridium perfringens in Meat Samples by Using Molecular Methods.<br>Applied and Environmental Microbiology, 2011, 77, 7526-7532.                                                                                                                 | 3.1 | 39        |
| 98  | Evidence that alterations in small molecule permeability are involved in theClostridium perfringens<br>type a enterotoxin-Induced inhibition of macromolecular synthesis in vero cells. Journal of Cellular<br>Physiology, 1989, 140, 498-504.                                   | 4.1 | 38        |
| 99  | Contributions of Nanl Sialidase to Caco-2 Cell Adherence by Clostridium perfringens Type A and C<br>Strains Causing Human Intestinal Disease. Infection and Immunity, 2014, 82, 4620-4630.                                                                                       | 2.2 | 38        |
| 100 | Further Characterization of Clostridium perfringens Small Acid Soluble Protein-4 (Ssp4) Properties and Expression. PLoS ONE, 2009, 4, e6249.                                                                                                                                     | 2.5 | 36        |
| 101 | Comparison of receptors for Clostridium perfringens type A and cholera enterotoxins in isolated rabbit intestinal brush border membranes. Microbial Pathogenesis, 1986, 1, 89-100.                                                                                               | 2.9 | 35        |
| 102 | Development and Application of an Oral Challenge Mouse Model for Studying Clostridium perfringens Type D Infection. Infection and Immunity, 2007, 75, 4282-4288.                                                                                                                 | 2.2 | 35        |
| 103 | The VirS/VirR Two-Component System Regulates the Anaerobic Cytotoxicity, Intestinal Pathogenicity, and Enterotoxemic Lethality of Clostridium perfringens Type C Isolate CN3685. MBio, 2011, 2, e00338-10.                                                                       | 4.1 | 35        |
| 104 | Enterotoxic Clostridia: <i>Clostridium perfringens</i> Enteric Diseases. Microbiology Spectrum, 2018,<br>6, .                                                                                                                                                                    | 3.0 | 35        |
| 105 | Host cell-induced signaling causes <i>Clostridium perfringens</i> to upregulate production of toxins important for intestinal infections. Gut Microbes, 2014, 5, 96-107.                                                                                                         | 9.8 | 33        |
| 106 | Synergistic Effects of Clostridium perfringens Enterotoxin and Beta Toxin in Rabbit Small Intestinal<br>Loops. Infection and Immunity, 2014, 82, 2958-2970.                                                                                                                      | 2.2 | 33        |
| 107 | Clostridium perfringens Type A Enterotoxin Damages the Rabbit Colon. Infection and Immunity, 2014, 82, 2211-2218.                                                                                                                                                                | 2.2 | 32        |
| 108 | Cysteine-Scanning Mutagenesis Supports the Importance of Clostridium perfringens Enterotoxin<br>Amino Acids 80 to 106 for Membrane Insertion and Pore Formation. Infection and Immunity, 2012, 80,<br>4078-4088.                                                                 | 2.2 | 31        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Characterization of Membrane-Associated <i>Clostridium perfringens</i> Enterotoxin following<br>Pronase Treatment. Infection and Immunity, 1998, 66, 5897-5905.                                             | 2.2 | 31        |
| 110 | Organization of the cpe Locus in CPE-Positive Clostridium perfringens Type C and D Isolates. PLoS ONE, 2010, 5, e10932.                                                                                     | 2.5 | 29        |
| 111 | Virulence Plasmids of Spore-Forming Bacteria. Microbiology Spectrum, 2014, 2, .                                                                                                                             | 3.0 | 28        |
| 112 | Structure-Function Analysis of Peptide Signaling in the Clostridium perfringens Agr-Like Quorum<br>Sensing System. Journal of Bacteriology, 2015, 197, 1807-1818.                                           | 2.2 | 28        |
| 113 | Clostridium perfringens enterotoxin and intestinal tight junctions. Trends in Microbiology, 2000, 8, 145-146.                                                                                               | 7.7 | 27        |
| 114 | Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. Archives of Microbiology, 2010, 192, 803-810.                                              | 2.2 | 24        |
| 115 | Proteolytic Processing and Activation of Clostridium perfringens Epsilon Toxin by Caprine Small<br>Intestinal Contents. MBio, 2014, 5, e01994-14.                                                           | 4.1 | 24        |
| 116 | Development and preliminary evaluation of a slide latex agglutination assay for detection of<br>Clostridium perfringens type A enterotoxin. Journal of Immunological Methods, 1987, 100, 131-136.           | 1.4 | 23        |
| 117 | Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly. Anaerobe, 2012, 18, 546-552.                                      | 2.1 | 23        |
| 118 | Characterization of Clostridium perfringens TpeL Toxin Gene Carriage, Production, Cytotoxic<br>Contributions, and Trypsin Sensitivity. Infection and Immunity, 2015, 83, 2369-2381.                         | 2.2 | 23        |
| 119 | Nanl Sialidase, CcpA, and CodY Work Together To Regulate Epsilon Toxin Production by Clostridium perfringens Type D Strain CN3718. Journal of Bacteriology, 2015, 197, 3339-3353.                           | 2.2 | 23        |
| 120 | Native or Proteolytically Activated Nanl Sialidase Enhances the Binding and Cytotoxic Activity of<br>Clostridium perfringens Enterotoxin and Beta Toxin. Infection and Immunity, 2018, 86, .                | 2.2 | 23        |
| 121 | Disruption of a toxin gene by introduction of a foreign gene into the chromosome of Clostridium perfringens using targetron-induced mutagenesis. Plasmid, 2007, 58, 182-189.                                | 1.4 | 22        |
| 122 | New insights into Clostridium perfringens epsilon toxin activation and action on the brain during enterotoxemia. Anaerobe, 2016, 41, 27-31.                                                                 | 2.1 | 21        |
| 123 | Clostridium perfringens. , 0, , 465-489.                                                                                                                                                                    |     | 21        |
| 124 | CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101. Infection and Immunity, 2017, 85, .                                                                    | 2.2 | 20        |
| 125 | Nanl Sialidase Can Support the Growth and Survival of Clostridium perfringens Strain F4969 in the<br>Presence of Sialyated Host Macromolecules (Mucin) or Caco-2 Cells. Infection and Immunity, 2018, 86, . | 2.2 | 20        |
| 126 | Ulcerative Enteritis-Like Disease Associated with Clostridium perfringens Type A in Bobwhite Quail<br>(Colinus virginianus). Avian Diseases, 2008, 52, 635-640.                                             | 1.0 | 18        |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Nanl Sialidase Is an Important Contributor to Clostridium perfringens Type F Strain F4969 Intestinal<br>Colonization in Mice. Infection and Immunity, 2018, 86, .                                                              | 2.2 | 18        |
| 128 | RIP1, RIP3, and MLKL Contribute to Cell Death Caused by Clostridium perfringens Enterotoxin. MBio, 2019, 10, .                                                                                                                 | 4.1 | 18        |
| 129 | Structure of a C. perfringens Enterotoxin Mutant in Complex with a Modified Claudin-2 Extracellular<br>Loop 2. Journal of Molecular Biology, 2014, 426, 3134-3147.                                                             | 4.2 | 17        |
| 130 | Evidence that Membrane Rafts Are Not Required for the Action of <i>Clostridium perfringens</i> Enterotoxin. Infection and Immunity, 2008, 76, 5677-5685.                                                                       | 2.2 | 16        |
| 131 | Ulcerative Enterocolitis in Two Goats Associated with Enterotoxin- and beta2 Toxin–Positive<br><i>Clostridium Perfringens</i> Type D. Journal of Veterinary Diagnostic Investigation, 2008, 20,<br>668-672.                    | 1.1 | 16        |
| 132 | Identification of an Important Orphan Histidine Kinase for the Initiation of Sporulation and<br>Enterotoxin Production by <i>Clostridium perfringens</i> Type F Strain SM101. MBio, 2019, 10, .                                | 4.1 | 15        |
| 133 | Interferon pretreatment enhances the sensitivity of Vero cells to Clostridium perfringens type A enterotoxin. Microbial Pathogenesis, 1987, 3, 195-206.                                                                        | 2.9 | 13        |
| 134 | NanR Regulates <i>nanl</i> Sialidase Expression by Clostridium perfringens F4969, a Human<br>Enteropathogenic Strain. Infection and Immunity, 2017, 85, .                                                                      | 2.2 | 13        |
| 135 | NanR Regulates Sporulation and Enterotoxin Production by Clostridium perfringens Type F Strain F4969. Infection and Immunity, 2018, 86, .                                                                                      | 2.2 | 13        |
| 136 | Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin. MBio, 2016, 7, .                                                                                                                                   | 4.1 | 12        |
| 137 | Regulation of Enterotoxin Production in Clostridium perfringens. , 1997, , 471-487.                                                                                                                                            |     | 12        |
| 138 | Evidence that Clostridium perfringens Enterotoxin-Induced Intestinal Damage and Enterotoxemic<br>Death in Mice Can Occur Independently of Intestinal Caspase-3 Activation. Infection and Immunity, 2018,<br>86, .              | 2.2 | 11        |
| 139 | Enterotoxic Clostridia: Clostridium perfringens Type A and Clostridium difficile. , 0, , 703-714.                                                                                                                              |     | 11        |
| 140 | A Synthetic Peptide Corresponding to the Extracellular Loop 2 Region of Claudin-4 Protects against<br>Clostridium perfringens Enterotoxin <i>In Vitro</i> and <i>In Vivo</i> . Infection and Immunity, 2014,<br>82, 4778-4788. | 2.2 | 10        |
| 141 | The Potential Therapeutic Agent Mepacrine Protects Caco-2 Cells against Clostridium perfringens<br>Enterotoxin Action. MSphere, 2017, 2, .                                                                                     | 2.9 | 10        |
| 142 | <i>Clostridium perfringens</i> type C isolates rapidly upregulate their toxin production upon contact<br>with host cells. Virulence, 2010, 1, 97-100.                                                                          | 4.4 | 9         |
| 143 | Animal models to study the pathogenesis of enterotoxigenic Clostridium perfringens infections.<br>Microbes and Infection, 2012, 14, 1009-1016.                                                                                 | 1.9 | 8         |
| 144 | Antibody against Microbial Neuraminidases Recognizes Human Sialidase 3 (NEU3): the<br>Neuraminidase/Sialidase Superfamily Revisited. MBio, 2017, 8, .                                                                          | 4.1 | 8         |

| #   | Article                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Effects of Claudin-1 on the Action of Clostridium perfringens Enterotoxin in Caco-2 Cells. Toxins, 2019, 11, 582.                                                                                                                                                                                      | 3.4 | 8         |
| 146 | The Agr-Like Quorum-Sensing System Is Important for <i>Clostridium perfringens</i> Type A Strain<br>ATCC 3624 To Cause Gas Gangrene in a Mouse Model. MSphere, 2020, 5, .                                                                                                                              | 2.9 | 8         |
| 147 | Evidence That VirS Is a Receptor for the Signaling Peptide of the Clostridium perfringens Agr-like<br>Quorum Sensing System. MBio, 2020, 11, .                                                                                                                                                         | 4.1 | 8         |
| 148 | Interactions Between Clostridium perfringens Enterotoxin and Claudins. Methods in Molecular<br>Biology, 2011, 762, 63-75.                                                                                                                                                                              | 0.9 | 8         |
| 149 | Identification and Characterization of Clostridium perfringens Beta Toxin Variants with Differing<br>Trypsin Sensitivity and <i>In Vitro</i> Cytotoxicity Activity. Infection and Immunity, 2015, 83, 1477-1486.                                                                                       | 2.2 | 7         |
| 150 | The effects of Clostridiumperfringens enterotoxin on intracellular levels or transport of uridine,<br>thymidine and leucine do not fully explain enterotoxin-induced inhibition of macromolecular<br>synthesis in vero cells. Biochemical and Biophysical Research Communications, 1988, 153, 699-707. | 2.1 | 4         |
| 151 | Clostridium perfringens enterotoxin. , 2006, , 763-778.                                                                                                                                                                                                                                                |     | 4         |
| 152 | Clostridium perfringens Type E Animal Enteritis Isolates with Highly Conserved, Silent Enterotoxin<br>Gene Sequences. Infection and Immunity, 1998, 66, 4531-4536.                                                                                                                                     | 2.2 | 4         |
| 153 | Nanl Sialidase Enhances the Action of Clostridium perfringens Enterotoxin in the Presence of Mucus.<br>MSphere, 2021, 6, e0084821.                                                                                                                                                                     | 2.9 | 4         |
| 154 | Characterization of calcium involvement in the Clostridium perfringens type A enterotoxin-induced release of 3H-nucleotides from Vero cells. Microbial Pathogenesis, 1989, 6, 17-28.                                                                                                                   | 2.9 | 3         |
| 155 | Clostridium perfringens Sporulation and Sporulation-Associated Toxin Production. , 2016, , 331-347.                                                                                                                                                                                                    |     | 3         |
| 156 | Potential Therapeutic Effects of Mepacrine against Clostridium perfringens Enterotoxin in a Mouse<br>Model of Enterotoxemia. Infection and Immunity, 2019, 87, .                                                                                                                                       | 2.2 | 3         |
| 157 | NanH Is Produced by Sporulating Cultures of Clostridium perfringens Type F Food Poisoning Strains and Enhances the Cytotoxicity of C. perfringens Enterotoxin. MSphere, 2021, 6, .                                                                                                                     | 2.9 | 3         |
| 158 | Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of<br>two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal<br>loops. Molecular Microbiology, 2000, 35, 249-249.                                    | 2.5 | 2         |
| 159 | Crystallization and preliminary crystallographic analysis of theClostridium perfringensenterotoxin.<br>Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 794-797.                                                                                                         | 0.7 | 2         |
| 160 | Evidence that the Agrâ€like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of <i>Clostridium perfringens</i> type C isolate CN3685. Molecular Microbiology, 2012, 83, 1287-1287.                                                                                 | 2.5 | 2         |
| 161 | Clostridium perfringens enterotoxin. , 2015, , 815-838.                                                                                                                                                                                                                                                |     | 2         |
|     |                                                                                                                                                                                                                                                                                                        |     |           |

162 Enterotoxic Clostridia:Clostridium perfringensEnteric Diseases. , 2019, , 977-990.

2

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Using More Than 1 (Path)Way to Kill a Host Cell: Lessons From Clostridium perfringens Enterotoxin.<br>Microbiology Insights, 2020, 13, 117863612093151.                                                    | 2.0 | 2         |
| 164 | Nanl Sialidase Contributes to the Growth and Adherence of Clostridium perfringens Type F Strain F4969 in the Presence of Adherent Mucus. Infection and Immunity, 2021, 89, e0025621.                       | 2.2 | 2         |
| 165 | Virulence Plasmids of Spore-Forming Bacteria. , 0, , 533-557.                                                                                                                                              |     | 1         |
| 166 | Letter To The Editor. Anaerobe, 1995, 1, 237-238.                                                                                                                                                          | 2.1 | 0         |
| 167 | Identifying the Basis for VirS/VirR Two-Component Regulatory System Control of Clostridium perfringens Beta-Toxin Production. Journal of Bacteriology, 2021, 203, e0027921.                                | 2.2 | 0         |
| 168 | Clostridium difficile. K. Aktories , T. D. Wilkins. Quarterly Review of Biology, 2001, 76, 277-277.                                                                                                        | 0.1 | 0         |
| 169 | Reevaluation of whether a Functional Agr-like Quorum-Sensing System Is Necessary for Production of<br>Wild-Type Levels of Epsilon-Toxin by Clostridium perfringens Type D Strains. MBio, 2022, , e0049622. | 4.1 | 0         |