Christine Des Rosiers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8353962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein <i>O</i> â€GlcNAcylation levels are regulated independently of dietary intake in a tissue and timeâ€specific manner during rat postnatal development. Acta Physiologica, 2021, 231, e13566.	1.8	11
2	Identification of Circulating Endocan-1 and Ether Phospholipids as Biomarkers for Complications in Thalassemia Patients. Metabolites, 2021, 11, 70.	1.3	3
3	Impact of obesity on dayâ€night differences in cardiac metabolism. FASEB Journal, 2021, 35, e21298.	0.2	18
4	Adaptive optimization of the OXPHOS assembly line partially compensates lrpprc-dependent mitochondrial translation defects in mice. Communications Biology, 2021, 4, 989.	2.0	4
5	Branched chain amino acids selectively promote cardiac growth at the end of the awake period. Journal of Molecular and Cellular Cardiology, 2021, 157, 31-44.	0.9	29
6	Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nature Metabolism, 2020, 2, 1248-1264.	5.1	87
7	Reducing 14-3-3ζ expression influences adipocyte maturity and impairs function. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E117-E132.	1.8	6
8	Fish oil supplementation alleviates metabolic and anxiodepressive effects of diet-induced obesity and associated changes in brain lipid composition in mice. International Journal of Obesity, 2020, 44, 1936-1945.	1.6	33
9	First characterization of glucose flux through the hexosamine biosynthesis pathway (HBP) in ex vivo mouse heart. Journal of Biological Chemistry, 2020, 295, 2018-2033.	1.6	62
10	Abstract 13917: <i>O</i> -GlcNAc Levels Are Regulated in a Time and Tissue Specific Manner Independently of Dietary Intake. Circulation, 2020, 142, .	1.6	0
11	Association between fat-soluble nutrient status and auditory and visual related potentials in newly diagnosed non-screened infants with cystic fibrosis: A case-control study. Prostaglandins Leukotrienes and Essential Fatty Acids, 2019, 150, 21-30.	1.0	1
12	mTORC1 is required for expression of LRPPRC and cytochrome- <i>c</i> oxidase but not HIF-1α in Leigh syndrome French Canadian type patient fibroblasts. American Journal of Physiology - Cell Physiology, 2019, 317, C58-C67.	2.1	8
13	Muscle-Specific Lipid Hydrolysis Prolongs Lifespan through Global Lipidomic Remodeling. Cell Reports, 2019, 29, 4540-4552.e8.	2.9	23
14	Lipidomics unveils lipid dyshomeostasis and low circulating plasmalogens as biomarkers in a monogenic mitochondrial disorder. JCI Insight, 2019, 4, .	2.3	26
15	Increased cardiac fatty acid oxidation in a mouse model with decreased malonyl-CoA sensitivity of CPT1B. Cardiovascular Research, 2018, 114, 1324-1334.	1.8	37
16	Protecting the heart through MK2 modulation, toward a role in diabetic cardiomyopathy and lipid metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1914-1922.	1.8	22
17	Perinatal deficiency in dietary omegaâ€3 fatty acids potentiates sucrose reward and dietâ€induced obesity in mice. International Journal of Developmental Neuroscience, 2018, 64, 8-13.	0.7	13
18	Comprehensive and Reproducible Untargeted Lipidomic Workflow Using LC-QTOF Validated for Human Plasma Analysis. Journal of Proteome Research, 2018, 17, 3657-3670.	1.8	31

CHRISTINE DES ROSIERS

#	Article	IF	CITATIONS
19	Metabolic Response of the Immature Right Ventricle to Acute Pressure Overloading. Journal of the American Heart Association, 2018, 7, .	1.6	6
20	Saturated high-fat feeding independent of obesity alters hypothalamus-pituitary-adrenal axis function but not anxiety-like behaviour. Psychoneuroendocrinology, 2017, 83, 142-149.	1.3	37
21	Acute detachment of hexokinase II from mitochondria modestly increases oxygen consumption of the intact mouse heart. Metabolism: Clinical and Experimental, 2017, 72, 66-74.	1.5	15
22	Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H768-H781.	1.5	95
23	Ivabradine and metoprolol differentially affect cardiac glucose metabolism despite similar heart rate reduction in a mouse model of dyslipidemia. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H991-H1003.	1.5	10
24	<i><scp>SLC</scp>25A46</i> is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Molecular Medicine, 2016, 8, 1019-1038.	3.3	141
25	Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1992-2004.	2.4	6
26	MK2 Deletion in Mice Prevents Diabetes-Induced Perturbations in Lipid Metabolism and Cardiac Dysfunction. Diabetes, 2016, 65, 381-392.	0.3	29
27	Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids. Neuropsychopharmacology, 2016, 41, 811-821.	2.8	100
28	A Metabolic Signature of Mitochondrial Dysfunction Revealed through a Monogenic Form of Leigh Syndrome. Cell Reports, 2015, 13, 981-989.	2.9	113
29	Metabolic Tracing Using Stable Isotope-Labeled Substrates and Mass Spectrometry in the Perfused Mouse Heart. Methods in Enzymology, 2015, 561, 107-147.	0.4	26
30	Mitochondrial Vulnerability and Increased Susceptibility to Nutrient-Induced Cytotoxicity in Fibroblasts from Leigh Syndrome French Canadian Patients. PLoS ONE, 2015, 10, e0120767.	1.1	29
31	PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2517-2525.	1.1	170
32	Differential effects of octanoate and heptanoate on myocardial metabolism during extracorporeal membrane oxygenation in an infant swine model. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1157-H1165.	1.5	16
33	Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H137-H146.	1.5	13
34	Lack of Angiopoietinâ€Likeâ€⊋ Expression Limits the Metabolic Stress Induced by a Highâ€Fat Diet and Maintains Endothelial Function in Mice. Journal of the American Heart Association, 2014, 3, .	1.6	17
35	William (Bill) C. Stanley (1957–2013). American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H161-H162.	1.5	0
36	Circulating levels of linoleic acid and HDL-cholesterol are major determinants of 4-hydroxynonenal protein adducts in patients with heart failure. Redox Biology, 2014, 2, 148-155.	3.9	23

CHRISTINE DES ROSIERS

#	Article	IF	CITATIONS
37	Propofol Compared with Isoflurane Inhibits Mitochondrial Metabolism in Immature Swine Cerebral Cortex. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 514-521.	2.4	51
38	Abstract 15650: Nutritional Support With Medium Chain Fatty Acids During Extracorporeal Membrane Oxygenation in Infant Swine Model. Circulation, 2014, 130, .	1.6	0
39	Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca ²⁺ uptake, without altering permeability transition or left ventricular function. Physiological Reports, 2013, 1, e00009.	0.7	8
40	Mechanical Circulatory Unloading Promotes Proteins Synthesis and Maintains Leucine Oxidation. FASEB Journal, 2012, 26, 1127.1.	0.2	0
41	Cardiac anaplerosis in health and disease: food for thought. Cardiovascular Research, 2011, 90, 210-219.	1.8	80
42	Increase of myogenic tone in the cerebral arteries of dyslipidemic mice is not due to a vessel wall remodelling. FASEB Journal, 2009, 23, 627.2.	0.2	0
43	Short term consumption of diets high in fat and/or sugar in young animals increase cardiovascular risk factors prior to the onset of obesity. FASEB Journal, 2008, 22, 1226.34.	0.2	0
44	Metabolic alterations beyond fatty acid oxidation defects in PPARα null mice hearts. FASEB Journal, 2007, 21, A1376.	0.2	0
45	A critical perspective of the use of 13C-isotopomer analysis by GCMS and NMR as applied to cardiac metabolism. Metabolic Engineering, 2004, 6, 44-58.	3.6	70
46	A comparison between NMR and GCMS 13C-isotopomer analysis in cardiac metabolism. Molecular and Cellular Biochemistry, 2003, 249, 105-112.	1.4	21
47	Evidence of separate pathways for lactate uptake and release by the perfused rat heart. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E794-E802.	1.8	81
48	Acute hibernation decreases myocardial pyruvate carboxylation and citrate release. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1613-H1620.	1.5	56
49	Dystrophinâ€deficient cardiomyocytes are abnormally vulnerable to mechanical stressâ€induced contractile failure and injury. FASEB Journal, 2001, 15, 1655-1657.	0.2	167
50	Partitioning of pyruvate between oxidation and anaplerosis in swine hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2390-H2398.	1.5	80
51	APPLICATIONS OF MASS ISOTOPOMER ANALYSISTO NUTRITION RESEARCH. Annual Review of Nutrition, 1997, 17, 559-596.	4.3	100
52	Correction of13C Mass Isotopomer Distributions for Natural Stable Isotope Abundance. , 1996, 31, 255-262.		347
53	Biosynthesis and characterization of 3-hydroxyalkan-2-ones and 2,3-alkanediols: Potential products of aldehyde metabolism. Biological Mass Spectrometry, 1992, 21, 242-248.	0.5	8