Constantinos Pantos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8353610/publications.pdf

Version: 2024-02-01

84 papers 2,115 citations

28 h-index 265206 42 g-index

88 all docs 88 docs citations

88 times ranked 1910 citing authors

#	Article	IF	CITATIONS
1	Central-line-associated bloodstream infections, multi-drug-resistant bacteraemias and infection control interventions: a 6-year time-series analysis in a tertiary care hospital in Greece. Journal of Hospital Infection, 2022, 123, 27-33.	2.9	6
2	Association between consumption of antibiotics, infection control interventions and Clostridioides difficile infections: Analysis of six-year time-series data in a tertiary-care hospital in Greece. Infection, Disease and Health, 2022, 27, 119-128.	1.1	3
3	Machine learning based analysis of stroke lesions on mouse tissue sections. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1463-1477.	4.3	3
4	Low concentrations of bisphenol A promote the activation of the mitochondrial apoptotic pathway on Betaâ€TCâ€6 cells via the generation of intracellular reactive oxygen species and mitochondrial superoxide. Journal of Biochemical and Molecular Toxicology, 2022, 36, e23099.	3.0	8
5	The Potential of Thyroid Hormone Therapy in Severe COVID-19: Rationale and Preliminary Evidence. International Journal of Environmental Research and Public Health, 2022, 19, 8063.	2.6	4
6	Theophrastus Bombastus Von Hohenheim: Theological Reformer, Philosopher and Physician. Journal of Religion and Health, 2021, 60, 3907-3914.	1.7	4
7	Triiodothyronine prevents tissue hypoxia in experimental sepsis: potential therapeutic implications. Intensive Care Medicine Experimental, 2021, 9, 17.	1.9	6
8	Translational Block in Stroke: A Constructive and "Out-of-the-Box―Reappraisal. Frontiers in Neuroscience, 2021, 15, 652403.	2.8	21
9	Acute triiodothyronine treatment and red blood cell sedimentation rate (ESR) in critically ill COVID-19 patients: A novel association?. Clinical Hemorheology and Microcirculation, 2021, , 1-4.	1.7	4
10	The Use of L-Glucose in Cancer Diagnosis: Results from In Vitro and In Vivo Studies. Current Medicinal Chemistry, 2021, 28, 6110-6122.	2.4	3
11	Changes in Thyroid Hormone Signaling Mediate Cardiac Dysfunction in the Tg197 Mouse Model of Arthritis: Potential Therapeutic Implications. Journal of Clinical Medicine, 2021, 10, 5512.	2.4	1
12	Ectopic bone formation and systemic bone loss in a transmembrane TNF-driven model of human spondyloarthritis. Arthritis Research and Therapy, 2020, 22, 232.	3.5	15
13	Use of triiodothyronine to treat critically ill COVID-19 patients: a new clinical trial. Critical Care, 2020, 24, 209.	5.8	20
14	Triiodothyronine for the treatment of critically ill patients with COVID-19 infection: A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21, 573.	1.6	28
15	Association of Circulating Osteopontin Levels With Lower Extremity Arterial Disease in Subjects With Type 2 Diabetes Mellitus: A Cross-Sectional Observational Study. International Journal of Lower Extremity Wounds, 2020, 19, 180-189.	1.1	5
16	Cardiovascular Risk of Synthetic, Non-Biologic Disease-Modifying Anti- Rheumatic Drugs (DMARDs). Current Vascular Pharmacology, 2020, 18, 455-462.	1.7	4
17	Thyroid Hormone and Cardiac Repair. , 2020, , 153-162.		0
18	Belimumab in kidney transplantation. Lancet, The, 2019, 393, 874-875.	13.7	0

#	Article	IF	Citations
19	I-Thyroxine induces thermotolerance in yeast. Cell Stress and Chaperones, 2019, 24, 469-473.	2.9	4
20	Endothelin receptors in the brain modulate autonomic responses and arrhythmogenesis during acute myocardial infarction in rats. Life Sciences, 2019, 239, 117062.	4.3	2
21	A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods in Molecular Biology, 2019, 1896, 119-138.	0.9	11
22	Comorbid TNF-mediated heart valve disease and chronic polyarthritis share common mesenchymal cell-mediated aetiopathogenesis. Annals of the Rheumatic Diseases, 2018, 77, annrheumdis-2017-212597.	0.9	21
23	Plasma Irisin Levels in Subjects with Type 1 Diabetes: Comparison with Healthy Controls. Hormone and Metabolic Research, 2018, 50, 803-810.	1.5	14
24	Timeâ€'dependent and independent effects of thyroid hormone administration following myocardial infarction in rats. Molecular Medicine Reports, 2018, 18, 864-876.	2.4	11
25	Thyroid hormone receptor $\hat{l}\pm 1$ as a novel therapeutic target for tissue repair. Annals of Translational Medicine, 2018, 6, 254-254.	1.7	23
26	Pearls of Neonatal Intertrigo in Ancient Greek and Byzantine Medicine. Acta Medica Academica, 2018, 47, 131.	0.8	1
27	Protein kinase C and cardiac dysfunction: a review. Heart Failure Reviews, 2017, 22, 843-859.	3.9	81
28	Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. International Journal of Molecular Sciences, 2017, 18, 1821.	4.1	22
29	Neural Networks Modelling after Myocardial Infarction in Rats. , 2017, , .		0
30	Are Thyroid Hormone and Tumor Cell Proliferation in Human Breast Cancers Positive for HER2 Associated?. International Journal of Endocrinology, 2015, 2015, 1-6.	1.5	9
31	Translating thyroid hormone effects into clinical practice: the relevance of thyroid hormone receptor $\hat{l}\pm 1$ in cardiac repair. Heart Failure Reviews, 2015, 20, 273-282.	3.9	32
32	Attenuation of post-infarction remodeling in rats by sustained myocardial growth hormone administration. Growth Factors, 2015, 33, 250-258.	1.7	10
33	The Emerging Role of TR <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">î±</mml:mi></mml:mrow></mml:math> 1 in Cardiac Repair: Potential Therapeutic Implications. Oxidative Medicine and Cellular Longevity, 2014, 2014. 1-8.	4.0	24
34	Phenylephrine postconditioning increases myocardial injury: Are alpha-1 sympathomimetic agonist cardioprotective?. Annals of Cardiac Anaesthesia, 2014, 17, 200.	0.6	4
35	Oxidative Stress and Antioxidant Strategies in Cardiovascular Disease. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-2.	4.0	15
36	Changes in Thyroid Hormone Receptors After Permanent Cerebral Ischemia in Male Rats. Journal of Molecular Neuroscience, 2014, 54, 78-91.	2.3	29

#	Article	IF	CITATIONS
37	The Beneficial Effects of Ranolazine on Cardiac Function After Myocardial Infarction Are Greater in Diabetic Than in Nondiabetic Rats. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 457-469.	2.0	16
38	The effect of slow spaced eating on hunger and satiety in overweight and obese patients with type 2 diabetes mellitus. BMJ Open Diabetes Research and Care, 2014, 2, e000013.	2.8	28
39	The Vulnerable Myocardium: Need for a Paradigm Shift for the Management of Coronary Artery Disease?. Cardiology, 2014, 129, 18-19.	1.4	O
40	Inhibition of thyroid hormone receptor $\hat{l}\pm 1$ impairs post-ischemic cardiac performance after myocardial infarction in mice. Molecular and Cellular Biochemistry, 2013, 379, 97-105.	3.1	35
41	Thyroid hormone improves the mechanical performance of the post-infarcted diabetic myocardium: A response associated with up-regulation of Akt/mTOR and AMPK activation. Metabolism: Clinical and Experimental, 2013, 62, 1387-1393.	3.4	49
42	Short-term ventricular restraint attenuates post-infarction remodeling in rats. International Journal of Cardiology, 2013, 165, 278-284.	1.7	13
43	Thyroid hormone signalling is altered in response to physical training in patients with end-stage heart failure and mechanical assist devices: potential physiological consequences?. Interactive Cardiovascular and Thoracic Surgery, 2013, 17, 664-668.	1.1	37
44	Thyroid Hormone and Tissue Repair: New Tricks for an Old Hormone?. Journal of Thyroid Research, 2013, 2013, 1-5.	1.3	26
45	Impact of Thyroid Hormone Administration on Fluid Requirements and Hepatic Injury Markers in Hemorrhagic Shock Due to Liver Trauma. Journal of Investigative Surgery, 2013, 26, 305-311.	1.3	2
46	Thyroid hormone and cardiac repair/regeneration: from Prometheus myth to reality?. Canadian Journal of Physiology and Pharmacology, 2012, 90, 977-987.	1.4	29
47	Dose-dependent effects of thyroid hormone on post-ischemic cardiac performance: potential involvement of Akt and ERK signalings. Molecular and Cellular Biochemistry, 2012, 363, 235-243.	3.1	51
48	New insights into the role of thyroid hormone in cardiac remodeling: time to reconsider?. Heart Failure Reviews, 2011, 16, 79-96.	3.9	47
49	Acute T3 treatment protects the heart against ischemia-reperfusion injury via $TR\hat{l}\pm 1$ receptor. Molecular and Cellular Biochemistry, 2011, 353, 235-241.	3.1	49
50	Cell-Type-Dependent Thyroid Hormone Effects on Glioma Tumor Cell Lines. Journal of Thyroid Research, 2011, 2011, 1-8.	1.3	18
51	Thyroid Hormone and Cardiac Disease: From Basic Concepts to Clinical Application. Journal of Thyroid Research, 2011, 2011, 1-13.	1.3	33
52	Comment: Worsening Heart Failure in the Setting of Dronedarone Initiation. Annals of Pharmacotherapy, 2011, 45, 689-689.	1.9	1
53	Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association?. European Journal of Endocrinology, 2011, 165, 107-114.	3.7	77
54	Thyroid hormone can favorably remodel the diabetic myocardium after acute myocardial infarction. Molecular and Cellular Biochemistry, 2010, 345, 161-169.	3.1	35

#	Article	IF	Citations
55	Rebuilding the post-infarcted myocardium by activating †physiologic' hypertrophic signaling pathways: the thyroid hormone paradigm. Heart Failure Reviews, 2010, 15, 143-154.	3.9	28
56	Thyroid hormone as a therapeutic option for treating ischaemic heart disease: From early reperfusion to late remodelling. Vascular Pharmacology, 2010, 52, 157-165.	2.1	26
57	The differential impact of volatile and intravenous anaesthetics on stress response in the swine. Hormones, 2010, 9, 67-75.	1.9	30
58	Thyroid Hormone Receptor $\hat{l}\pm 1$ Downregulation in Postischemic Heart Failure Progression: The Potential Role of Tissue Hypothyroidism. Hormone and Metabolic Research, 2010, 42, 718-724.	1.5	65
59	Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion?. Basic Research in Cardiology, 2009, 104, 69-77.	5.9	94
60	Morphine administration at reperfusion fails to improve postischaemic cardiac function but limits myocardial injury probably via heat-shock protein 27 phosphorylation. European Journal of Anaesthesiology, 2009, 26, 572-581.	1.7	4
61	Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Research in Cardiology, 2008, 103, 308-318.	5.9	102
62	Thyroid hormone and "cardiac metamorphosis― Potential therapeutic implications. , 2008, 118, 277-294.		55
63	Thyroid hormone and myocardial ischaemia. Journal of Steroid Biochemistry and Molecular Biology, 2008, 109, 314-322.	2.5	11
64	Comparative effects of acute vs. chronic oral amiodarone treatment during acute myocardial infarction in rats. Europace, 2007, 9, 1099-1104.	1.7	25
65	Time-dependent changes in the expression of thyroid hormone receptor $\hat{l}\pm 1$ in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling. European Journal of Endocrinology, 2007, 156, 415-424.	3.7	43
66	Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. European Journal of Cardio-thoracic Surgery, 2007, 32, 333-339.	1.4	84
67	Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: potential therapeutic implications. European Journal of Endocrinology, 2007, 157, 515-520.	3.7	50
68	Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats. Metabolism: Clinical and Experimental, 2007, 56, 1104-1110.	3.4	46
69	Effects of hyper- and hypothyroidism on acetylcholinesterase, (Na+, K+)- and Mg 2+ -ATPase activities of adult rat hypothalamus and cerebellum. Metabolic Brain Disease, 2007, 22, 31-38.	2.9	13
70	Protection of the abnormal heart. Heart Failure Reviews, 2007, 12, 319-330.	3.9	14
71	Effects of Acute and Chronic Cadmium Administration on the Vascular Reactivity of Rat Aorta. BioMetals, 2007, 20, 83-91.	4.1	14
72	Enhanced tolerance of the rat myocardium to ischemia and reperfusion injury early after acute myocardial infarction. Basic Research in Cardiology, 2007, 102, 327-333.	5.9	29

#	Article	IF	CITATIONS
73	High glucose protects embryonic cardiac cells against simulated ischemia. Molecular and Cellular Biochemistry, 2006, 284, 87-93.	3.1	21
74	Myocardial Ischemia. Basic Science for the Cardiologist, 2006, , 11-76.	0.1	11
75	Changes in Antioxidant Status, Protein Concentration, Acetylcholinesterase, (Na+,K+)-, and Mg2+-ATPase Activities in the Brain of Hyper- and Hypothyroid Adult Rats. Metabolic Brain Disease, 2005, 20, 129-139.	2.9	38
76	Dronedarone Administration Prevents Body Weight Gain and Increases Tolerance of the Heart to Ischemic Stress: A Possible Involvement of Thyroid Hormone Receptor $\hat{l}\pm 1$. Thyroid, 2005, 15, 16-23.	4. 5	42
77	Thyroid hormone and phenotypes of cardioprotection. Basic Research in Cardiology, 2004, 99, 101-120.	5.9	64
78	Title is missing!. Molecular and Cellular Biochemistry, 2003, 242, 173-180.	3.1	56
79	Involvement of p38 MAPK and JNK in heat stress-induced cardioprotection. Basic Research in Cardiology, 2003, 98, 158-164.	5.9	20
80	Thyroxine pretreatment increases basal myocardial heat-shock protein 27 expression and accelerates translocation and phosphorylation of this protein upon ischaemia. European Journal of Pharmacology, 2003, 478, 53-60.	3.5	47
81	Dobutamine administration exacerbates postischaemic myocardial dysfunction in isolated rat hearts: an effect reversed by thyroxine pretreatment. European Journal of Pharmacology, 2003, 460, 155-161.	3.5	25
82	Mepivacaine Alters Vascular Responsiveness to Vasoconstrictors in Aortic Rings from Normal and Aortic-Banded Rats. Basic and Clinical Pharmacology and Toxicology, 2003, 93, 269-274.	0.0	6
83	Thyroid hormone and cardioprotection: study of p38 MAPK and JNKs during ischaemia and at reperfusion in isolated rat heart. Molecular and Cellular Biochemistry, 2003, 242, 173-80.	3.1	18
84	Effects of dronedarone and amiodarone on plasma thyroid hormones and on the basal and postischemic performance of the isolated rat heart. European Journal of Pharmacology, 2002, 444, 191-196.	3.5	27