Victor M Nazarychev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8353479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microsecond Atomic-Scale Molecular Dynamics Simulations of Polyimides. Macromolecules, 2013, 46, 6357-6363.	2.2	80
2	Thermal properties of bulk polyimides: insights from computer modeling versus experiment. Soft Matter, 2014, 10, 1224.	1.2	68
3	Molecular dynamics simulations of uniaxial deformation of thermoplastic polyimides. Soft Matter, 2016, 12, 3972-3981.	1.2	61
4	Molecular-dynamics simulation of polyimide matrix pre-crystallization near the surface of a single-walled carbon nanotube. RSC Advances, 2014, 4, 830-844.	1.7	51
5	Scale-Dependent Miscibility of Polylactide and Polyhydroxybutyrate: Molecular Dynamics Simulations. Macromolecules, 2018, 51, 552-563.	2.2	50
6	Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. International Journal of Molecular Sciences, 2022, 23, 645.	1.8	46
7	Influence of the electrostatic interactions on thermophysical properties of polyimides: Molecularâ€dynamics simulations. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 640-646.	2.4	45
8	Toward realistic computer modeling of paraffin-based composite materials: critical assessment of atomic-scale models of paraffins. RSC Advances, 2019, 9, 38834-38847.	1.7	39
9	Parameterization of electrostatic interactions for molecular dynamics simulations of heterocyclic polymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 912-923.	2.4	36
10	Correlation between the High-Temperature Local Mobility of Heterocyclic Polyimides and Their Mechanical Properties. Macromolecules, 2016, 49, 6700-6710.	2.2	32
11	Poly(lactic acid)â€based nanocomposites filled with cellulose nanocrystals with modified surface: allâ€atom molecular dynamics simulations. Polymer International, 2016, 65, 892-898.	1.6	31
12	Mechanical Properties of a Polymer at the Interface Structurally Ordered by Graphene. Journal of Physical Chemistry C, 2016, 120, 6771-6777.	1.5	31
13	Evaluation of thermal conductivity of organic phase-change materials from equilibrium and non-equilibrium computer simulations: Paraffin as a test case. International Journal of Heat and Mass Transfer, 2021, 165, 120639.	2.5	30
14	Influence of the carbon nanotube surface modification on the microstructure of thermoplastic binders. RSC Advances, 2015, 5, 51621-51630.	1.7	26
15	Evaluation of the characteristic equilibration times of bulk polyimides via full-atomic computer simulation. Polymer Science - Series A, 2013, 55, 570-576.	0.4	25
16	Influence of specific intermolecular interactions on the thermal and dielectric properties of bulk polymers: atomistic molecular dynamics simulations of Nylon 6. Soft Matter, 2017, 13, 474-485.	1.2	22
17	Toward Predictive Molecular Dynamics Simulations of Asphaltenes in Toluene and Heptane. ACS Omega, 2019, 4, 20005-20014.	1.6	22
18	Simulating local mobility and mechanical properties of thermostable polyimides with different dianhydride fragments, Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 375-382	2.4	20

VICTOR M NAZARYCHEV

#	Article	IF	CITATIONS
19	Atomistic Molecular Dynamics Simulations of the Initial Crystallization Stage in an SWCNT-Polyetherimide Nanocomposite. Polymers, 2017, 9, 548.	2.0	19
20	Multiscale computer simulation of polymer nanocomposites based on thermoplastics. Polymer Science - Series C, 2016, 58, 2-15.	0.8	18
21	Molecular dynamics simulations of oligoester brushes: the origin of unusual conformations. Soft Matter, 2017, 13, 6627-6638.	1.2	18
22	Computer Simulation of Asphaltenes. Petroleum Chemistry, 2018, 58, 983-1004.	0.4	18
23	Molecular dynamics simulation of poly(3â€hexylthiophene) helical structure <i>In Vacuo</i> and in amorphous polymer surrounding. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2448-2456.	2.4	16
24	Computer simulation of the heat-resistant polyimides ULTEMâ,,¢ and EXTEMâ,,¢ with the use of GROMOS53a6 and AMBER99 force fields. Polymer Science - Series A, 2014, 56, 558-567.	0.4	12
25	How to fold back grafted chains in dipolar brushes. Polymer, 2018, 147, 213-224.	1.8	12
26	Structural Ordering in SWCNT-Polyimide Nanocomposites and Its Influence on Their Mechanical Properties. Polymers, 2018, 10, 1245.	2.0	10
27	Effects of branching and polydispersity on thermal conductivity of paraffin waxes. International Journal of Heat and Mass Transfer, 2022, 195, 123192.	2.5	9
28	Grafted Dipolar Chains: Dipoles and Restricted Freedom Lead to Unexpected Hairpins. Macromolecules, 2020, 53, 29-38.	2.2	8
29	Asphaltenes as novel thermal conductivity enhancers for liquid paraffin: Insight from in silico modeling. Journal of Molecular Liquids, 2021, , 117112.	2.3	8
30	Computational Modeling of Polylactide and Its Cellulose-Reinforced Nanocomposites. , 2016, , 313-341.		4
31	Linear Viscoelasticity of Polymers and Polymer Nanocomposites: Molecular-Dynamics Large Amplitude Oscillatory Shear and Probe Rheology Simulations. Advances in Dielectrics, 2018, , 375-404.	1.2	4
32	Self-Assembly of Oligo(phenylene-thiophene)s on Monolayer Graphene: Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2019, 123, 859-867.	1.5	2
33	Branched <i>versus</i> linear lactide chains for cellulose nanoparticle modification: an atomistic molecular dynamics study. Physical Chemistry Chemical Physics, 2021, 23, 457-469.	1.3	2
34	Local orientational mobility of polyimide-based nanocomposites. Polymer, 2018, 147, 142-149.	1.8	1
35	The Initial Stage of Thermoplastic Polyimide Crystallization: Computer Simulations and Experiments. Reviews and Advances in Chemistry, 2021, 11, 85-99.	0.2	1