List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8353157/publications.pdf Version: 2024-02-01

KUAN HU

#	Article	IF	CITATIONS
1	Peptide-based nanomaterials: Self-assembly, properties and applications. Bioactive Materials, 2022, 11, 268-282.	8.6	132
2	Whole-body PET tracking of a d-dodecapeptide and its radiotheranostic potential for PD-L1 overexpressing tumors. Acta Pharmaceutica Sinica B, 2022, 12, 1363-1376.	5.7	11
3	A multifunctional nanotheranostic agent potentiates erlotinib to EGFR wild-type non-small cell lung cancer. Bioactive Materials, 2022, 13, 312-323.	8.6	21
4	Development of a Stable Peptide-Based PET Tracer for Detecting CD133-Expressing Cancer Cells. ACS Omega, 2022, 7, 334-341.	1.6	6
5	PEIGel: A biocompatible and injectable scaffold with innate immune adjuvanticity for synergized local immunotherapy. Materials Today Bio, 2022, 15, 100297.	2.6	13
6	Imaging of Transmembrane AMPA Receptor Regulatory Proteins by Positron Emission Tomography. Journal of Medicinal Chemistry, 2022, 65, 9144-9158.	2.9	2
7	Recent Progress on Graphene Flexible Photodetectors. Materials, 2022, 15, 4820.	1.3	10
8	Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharmaceutica Sinica B, 2021, 11, 373-393.	5.7	82
9	Synthesis and preliminary evaluation of novel 11C-labeled GluN2B-selective NMDA receptor negative allosteric modulators. Acta Pharmacologica Sinica, 2021, 42, 491-498.	2.8	8
10	Facile Chemoselective Modification of Thioethers Generates Chiral Center-Induced Helical Peptides. Methods in Molecular Biology, 2021, 2355, 301-322.	0.4	1
11	Flexible Supercapacitors Based on Graphene/Boron Nitride Nanosheets Electrodes and PVA/PEI Gel Electrolytes. Materials, 2021, 14, 1955.	1.3	17
12	Development of a highly-specific 18F-labeled irreversible positron emission tomography tracer for monoacylglycerol lipase mapping. Acta Pharmaceutica Sinica B, 2021, 11, 1686-1695.	5.7	10
13	Off-tumor IDO1 target engagements determine the cancer-immune set point and predict the immunotherapeutic efficacy. , 2021, 9, e002616.		7
14	²¹¹ At-Labeled Polymer Nanoparticles for Targeted Radionuclide Therapy of Glucose-Dependent Insulinotropic Polypeptide Receptor (GIPR)-Overexpressed Cancer. Bioconjugate Chemistry, 2021, 32, 1763-1772.	1.8	9
15	Novel Reversible-Binding PET Ligands for Imaging Monoacylglycerol Lipase Based on the Piperazinyl Azetidine Scaffold. Journal of Medicinal Chemistry, 2021, 64, 14283-14298.	2.9	9
16	¹³¹ I-IITM and ²¹¹ At-AITM: Two Novel Small-Molecule Radiopharmaceuticals Targeting Oncoprotein Metabotropic Glutamate Receptor 1. Journal of Nuclear Medicine, 2020, 61, 242-248.	2.8	14
17	Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors. Small, 2020, 16, e1904758.	5.2	107
18	Boron agents for neutron capture therapy. Coordination Chemistry Reviews, 2020, 405, 213139.	9.5	125

#	Article	IF	CITATIONS
19	3-(Cyclopropylmethyl)-7-((4-(4-[11C]methoxyphenyl)piperidin-1-yl)methyl)-8-(trifluoromethyl)-[1,2,4]triazolo[4,3- Synthesis and preliminary evaluation for PET imaging of metabotropic glutamate receptor subtype 2. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127555.	a]pyridine 1.0	2: 0
20	ldentification and Development of a New Positron Emission Tomography Ligand 4-(2-Fluoro-4-[¹¹ C]methoxyphenyl)-5-((1-methyl-1 <i>H</i> -pyrazol-3-yl)methoxy)picolinamide for Imaging Metabotropic Glutamate Receptor Subtype 2 (mGlu ₂). Journal of Medicinal Chemistry, 2020, 63, 11469-11483.	2.9	4
21	Harnessing the PD-L1 interface peptide for positron emission tomography imaging of the PD-1 immune checkpoint. RSC Chemical Biology, 2020, 1, 214-224.	2.0	11
22	Radiotheranostic Agent 64Cu-cyclam-RAFT-c(-RGDfK-)4 for Management of Peritoneal Metastasis in Ovarian Cancer. Clinical Cancer Research, 2020, 26, 6230-6241.	3.2	9
23	Synthesis and preliminary evaluation of 18F-labeled 1-(6,7-dimethyl-4-(methylamino)-1,3-dihydro-2H-pyrrolo[3,4-c]pyridin-2-yl)-2-(trans-2-(6-fluoropyridin-3-yl)cyclopro for imaging muscarinic acetylcholine receptor subtype 4. Tetrahedron Letters, 2020, 61, 152060.	opyl)tethan	1-11-one
24	Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nature Communications, 2020, 11, 2778.	5.8	233
25	Synthesis and preliminary evaluation of 4-hydroxy-6-(3-[11C]methoxyphenethyl)pyridazin-3(2H)-one, a 11C-labeled -amino acid oxidase (DAAO) inhibitor for PET imaging. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127326.	1.0	3
26	Stretchable Sensors: Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors (Small 7/2020). Small, 2020, 16, 2070037.	5.2	4
27	PET Imaging of VEGFR with a Novel ⁶⁴ Cu-Labeled Peptide. ACS Omega, 2020, 5, 8508-8514.	1.6	20
28	Self-Assembly of Constrained Cyclic Peptides Controlled by Ring Size. CCS Chemistry, 2020, 2, 42-51.	4.6	20
29	Directional assembly of a stapled α-helical peptide. Chemical Communications, 2019, 55, 10484-10487.	2.2	14
30	Radiosynthesis and evaluation of a novel monoacylglycerol lipase radiotracer: 1,1,1,3,3,3-hexafluoropropan-2-yl-3-(1-benzyl-1H-pyrazol-3-yl)azetidine-1-[11C]carboxylate. Bioorganic and Medicinal Chemistry, 2019, 27, 3568-3573.	1.4	6
31	A wearable system based on core-shell structured peptide-Co9S8 supercapacitor and triboelectric nanogenerator. Nano Energy, 2019, 66, 104149.	8.2	62
32	Design, Synthesis, and Evaluation of ¹⁸ F-Labeled Monoacylglycerol Lipase Inhibitors as Novel Positron Emission Tomography Probes. Journal of Medicinal Chemistry, 2019, 62, 8866-8872.	2.9	22
33	Elastic Cu@PPy sponge for hybrid device with energy conversion and storage. Nano Energy, 2019, 58, 852-861.	8.2	49
34	Surface Coordination of Black Phosphorus with Modified Cisplatin. Bioconjugate Chemistry, 2019, 30, 1658-1664.	1.8	25
35	Design, Synthesis, and Evaluation of Reversible and Irreversible Monoacylglycerol Lipase Positron Emission Tomography (PET) Tracers Using a "Tail Switching―Strategy on a Piperazinyl Azetidine Skeleton. Journal of Medicinal Chemistry, 2019, 62, 3336-3353.	2.9	28
36	Developing native peptide-based radiotracers for PD-L1 PET imaging and improving imaging contrast by pegylation. Chemical Communications, 2019, 55, 4162-4165.	2.2	32

#	Article	lF	CITATIONS
37	Synthesis and Preliminary Evaluation of ¹¹ C‣abeled VU0467485/AZ13713945 and Its Analogues for Imaging Muscarinic Acetylcholine Receptor Subtypeâ€4. ChemMedChem, 2019, 14, 303-309.	1.6	11
38	Effects of chiral center on an allâ€hydrocarbon tethered peptide. Peptide Science, 2019, 111, e24110.	1.0	0
39	N terminal <i>N</i> -methylation modulates chiral centre induced helical (CIH) peptides' biophysical properties. Chemical Communications, 2018, 54, 1865-1868.	2.2	9
40	A peptide-based supercapacitor and its performance improvement <i>via</i> TiO ₂ coating. Journal of Materials Chemistry A, 2018, 6, 8047-8052.	5.2	25
41	Wearable Wire-Shaped Symmetric Supercapacitors Based on Activated Carbon-Coated Graphite Fibers. ACS Applied Materials & Interfaces, 2018, 10, 34302-34310.	4.0	46
42	Facile Chemoselective Modification of Thio-Ethers Generates Chiral Center-Induced Helical Peptides. Bioconjugate Chemistry, 2018, 29, 2904-2908.	1.8	10
43	Tuning peptide self-assembly by an in-tether chiral center. Science Advances, 2018, 4, eaar5907.	4.7	50
44	Black Phosphorus Nanosheets Passivation Using a Tripeptide. Small, 2018, 14, e1801701.	5.2	36
45	Dual In-Tether Chiral Centers Modulate Peptide Helicity. Bioconjugate Chemistry, 2017, 28, 1537-1543.	1.8	19
46	Switching substitution groups on the in-tether chiral centre influences backbone peptides' permeability and target binding affinity. Organic and Biomolecular Chemistry, 2017, 15, 541-544.	1.5	24
47	A precisely positioned chiral center in an i, i + 7 tether modulates the helicity of the backbone peptide. Chemical Communications, 2017, 53, 6728-6731.	2.2	14
48	Structural Basis of Inhibition of ERα-Coactivator Interaction by High-Affinity N-Terminus Isoaspartic Acid Tethered Helical Peptides. Journal of Medicinal Chemistry, 2017, 60, 8731-8740.	2.9	29
49	An in-tether chiral center modulates the proapoptotic activity of the KLA peptide. Chemical Communications, 2017, 53, 10452-10455.	2.2	17
50	Development of a high quantum yield dye for tumour imaging. Chemical Science, 2017, 8, 6322-6326.	3.7	51
51	Reversible and Versatile On-Tether Modification of Chiral-Center-Induced Helical Peptides. Bioconjugate Chemistry, 2017, 28, 2001-2007.	1.8	14
52	Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. Journal of Materials Chemistry B, 2017, 5, 5433-5440.	2.9	152
53	SiRNA Delivery with PEGylated Graphene Oxide Nanosheets for Combined Photothermal and Genetherapy for Pancreatic Cancer. Theranostics, 2017, 7, 1133-1148.	4.6	165
54	In-Tether Chiral Center Induced Helical Peptide Modulators Target p53-MDM2/MDMX and Inhibit Tumor Growth in Stem-Like Cancer Cell. Theranostics, 2017, 7, 4566-4576.	4.6	22

#	Article	IF	CITATIONS
55	An Inâ€ŧether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide. Angewandte Chemie, 2016, 128, 8145-8149.	1.6	19
56	An Inâ€ŧether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide. Angewandte Chemie - International Edition, 2016, 55, 8013-8017.	7.2	111
57	An in-tether sulfilimine chiral center induces β-turn conformation in short peptides. Organic and Biomolecular Chemistry, 2016, 14, 9993-9999.	1.5	14
58	An in-tether sulfilimine chiral center induces helicity in short peptides. Chemical Communications, 2016, 52, 10389-10391.	2.2	35
59	Investigation of Cellular Uptakes of the In-Tether Chiral-Center-Induced Helical Pentapeptides. Bioconjugate Chemistry, 2016, 27, 2824-2827.	1.8	19
60	Self-Assembly of Constrained Cyclic Peptides Controlled by Ring Size. CCS Chemistry, 0, , 42-51.	4.6	0