
Chi-Lung Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8353104/publications.pdf Version: 2024-02-01

Сыльные Снале

#	Article	IF	CITATIONS
1	Mechanical properties of TiN deposited in synchronous bias mode through high-power impulse magnetron sputtering. Surface and Coatings Technology, 2022, 434, 128201.	4.8	11
2	Microstructure and Antimicrobial Properties of Zr-Cu-Ti Thin-Film Metallic Glass Deposited Using High-Power Impulse Magnetron Sputtering. Materials, 2022, 15, 2461.	2.9	4
3	Mechanical properties of amorphous and crystalline CrN/CrAlSiN multilayer coating fabricated using HPPMS. Surfaces and Interfaces, 2022, 31, 102064.	3.0	5
4	The Effect of Match between High Power Impulse and Bias Voltage: TiN Coating Deposited by High Power Impulse Magnetron Sputtering. Coatings, 2021, 11, 822.	2.6	6
5	Effects of Input Power Ratio of AlCr/Ti Target on the Microstructural and Mechanical Properties of AlTiCrN Coatings Synthesized by a High-Power Impulse Magnetron Sputtering Process. Coatings, 2021, 11, 826.	2.6	6
6	Effects of duty cycle on microstructure of TiN coatings prepared using CAE/HiPIMS. Vacuum, 2021, 192, 110449.	3.5	15
7	Effects of Substrate Rotation Speed on Structure and Adhesion Properties of CrN/CrAlSiN Multilayer Coatings Prepared Using High-Power Impulse Magnetron Sputtering. Coatings, 2020, 10, 742.	2.6	10
8	Influence of Nitrogen Content and Bias Voltage on Residual Stress and the Tribological and Mechanical Properties of CrAlN Films. Coatings, 2020, 10, 546.	2.6	42
9	Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlCrN coatings prepared using high power impulse magnetron sputtering. Surface and Coatings Technology, 2020, 386, 125484.	4.8	21
10	Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of TiAlSiN/CrN multilayer coatings prepared using high power impulse magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 051501.	2.1	12
11	Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering. Surface and Coatings Technology, 2019, 358, 577-585.	4.8	29
12	Synthesis and characteristics of nc-WC/a-C:H thin films deposited via a reactive HIPIMS process using optical emission spectrometry feedback control. Surface and Coatings Technology, 2018, 350, 1120-1127.	4.8	9
13	Synergetic effect for improved deposition of titanium nitride films. Surface and Coatings Technology, 2018, 350, 1098-1104.	4.8	16
14	Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering. Surface and Coatings Technology, 2017, 320, 138-145.	4.8	26
15	Influence of bi-layer period thickness on the residual stress, mechanical and tribological properties of nanolayered TiAlN/CrN multi-layer coatings. Vacuum, 2007, 81, 604-609.	3.5	43