Chi-Lung Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8353104/publications.pdf

Version: 2024-02-01

		1040056	996975	
15	255	9	15	
papers	citations	h-index	g-index	
15	15	15	185	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Influence of bi-layer period thickness on the residual stress, mechanical and tribological properties of nanolayered TiAlN/CrN multi-layer coatings. Vacuum, 2007, 81, 604-609.	3.5	43
2	Influence of Nitrogen Content and Bias Voltage on Residual Stress and the Tribological and Mechanical Properties of CrAlN Films. Coatings, 2020, 10, 546.	2.6	42
3	Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering. Surface and Coatings Technology, 2019, 358, 577-585.	4.8	29
4	Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering. Surface and Coatings Technology, 2017, 320, 138-145.	4.8	26
5	Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlCrN coatings prepared using high power impulse magnetron sputtering. Surface and Coatings Technology, 2020, 386, 125484.	4.8	21
6	Synergetic effect for improved deposition of titanium nitride films. Surface and Coatings Technology, 2018, 350, 1098-1104.	4.8	16
7	Effects of duty cycle on microstructure of TiN coatings prepared using CAE/HiPIMS. Vacuum, 2021, 192, 110449.	3.5	15
8	Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of TiAlSiN/CrN multilayer coatings prepared using high power impulse magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 051501.	2.1	12
9	Mechanical properties of TiN deposited in synchronous bias mode through high-power impulse magnetron sputtering. Surface and Coatings Technology, 2022, 434, 128201.	4.8	11
10	Effects of Substrate Rotation Speed on Structure and Adhesion Properties of CrN/CrAlSiN Multilayer Coatings Prepared Using High-Power Impulse Magnetron Sputtering. Coatings, 2020, 10, 742.	2.6	10
11	Synthesis and characteristics of nc-WC/a-C:H thin films deposited via a reactive HIPIMS process using optical emission spectrometry feedback control. Surface and Coatings Technology, 2018, 350, 1120-1127.	4.8	9
12	The Effect of Match between High Power Impulse and Bias Voltage: TiN Coating Deposited by High Power Impulse Magnetron Sputtering. Coatings, 2021, 11, 822.	2.6	6
13	Effects of Input Power Ratio of AlCr/Ti Target on the Microstructural and Mechanical Properties of AlTiCrN Coatings Synthesized by a High-Power Impulse Magnetron Sputtering Process. Coatings, 2021, 11, 826.	2.6	6
14	Mechanical properties of amorphous and crystalline CrN/CrAlSiN multilayer coating fabricated using HPPMS. Surfaces and Interfaces, 2022, 31, 102064.	3.0	5
15	Microstructure and Antimicrobial Properties of Zr-Cu-Ti Thin-Film Metallic Glass Deposited Using High-Power Impulse Magnetron Sputtering. Materials, 2022, 15, 2461.	2.9	4