
Madhuri Kango-Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8352898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nature Cell Biology, 2006, 8, 27-36.	4.6	673
2	Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nature Cell Biology, 2003, 5, 914-920.	4.6	652
3	Shar-pei mediates cell proliferation arrest during imaginal disc growth inDrosophila. Development (Cambridge), 2002, 129, 5719-5730.	1.2	302
4	The Fat Cadherin Acts through the Hippo Tumor-Suppressor Pathway to Regulate Tissue Size. Current Biology, 2006, 16, 2090-2100.	1.8	286
5	Atypical PKCÂ contributes to poor prognosis through loss of apical-basal polarity and Cyclin E overexpression in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12519-12524.	3.3	231
6	Tumor suppression by cell competition through regulation of the Hippo pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 484-489.	3.3	165
7	Phenotypic Plasticity of Invasive Edge Glioma Stem-like Cells in Response to Ionizing Radiation. Cell Reports, 2019, 26, 1893-1905.e7.	2.9	161
8	FOXD1–ALDH1A3 Signaling Is a Determinant for the Self-Renewal and Tumorigenicity of Mesenchymal Glioma Stem Cells. Cancer Research, 2016, 76, 7219-7230.	0.4	120
9	Regulation of organ size: Insights from the <i>Drosophila</i> Hippo signaling pathway. Developmental Dynamics, 2009, 238, 1627-1637.	0.8	89
10	Activation of JNK Signaling Mediates Amyloid-ß-Dependent Cell Death. PLoS ONE, 2011, 6, e24361.	1.1	75
11	Eye suppression, a novel function of <i>teashirt</i> , requires Wingless signaling. Development (Cambridge), 2002, 129, 4271-4280.	1.2	69
12	Hippo Signaling in Cancer: Lessons From Drosophila Models. Frontiers in Cell and Developmental Biology, 2019, 7, 85.	1.8	58
13	Eyeless collaborates with hedgehog and decapentaplegic signaling in drosophila eye induction. Developmental Biology, 2003, 256, 49-61.	0.9	49
14	Eye suppression, a novel function of teashirt, requires Wingless signaling. Development (Cambridge), 2002, 129, 4271-80.	1.2	48
15	Scribble Acts in the Drosophila Fat-Hippo Pathway to Regulate Warts Activity. PLoS ONE, 2012, 7, e47173.	1.1	43
16	A glimpse into dorsoâ€ventral patterning of the <i>Drosophila</i> eye. Developmental Dynamics, 2012, 241, 69-84.	0.8	41
17	A Positive Feedback Loop of Hippo- and c-Jun-Amino-Terminal Kinase Signaling Pathways Regulates Amyloid-Beta-Mediated Neurodegeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 117.	1.8	39
18	A soy protein Lunasin can ameliorate amyloid-beta 42 mediated neurodegeneration in Drosophila eye. Scientific Reports, 2018, 8, 13545.	1.6	37

Madhuri Kango-Singh

#	Article	IF	CITATIONS
19	Dorso-ventral asymmetric functions of teashirt in Drosophila eye development depend on spatial cues provided by early DV patterning genes. Mechanisms of Development, 2004, 121, 365-370.	1.7	33
20	The Hippo pathway effector Yki downregulates Wg signaling to promote retinal differentiation in the <i>Drosophila</i> eye. Development (Cambridge), 2015, 142, 2002-2013.	1.2	32
21	Inactivation of Hippo and cJun-N-terminal Kinase (JNK) signaling mitigate FUS mediated neurodegeneration in vivo. Neurobiology of Disease, 2020, 140, 104837.	2.1	32
22	Intercellular Cooperation and Competition in Brain Cancers: Lessons From <i>Drosophila</i> and Human Studies. Stem Cells Translational Medicine, 2014, 3, 1262-1268.	1.6	29
23	Dorsal eye selector pannier (pnr) suppresses the eye fate to define dorsal margin of the Drosophila eye. Developmental Biology, 2010, 346, 258-271.	0.9	26
24	Novel Neuroprotective Function of Apical-Basal Polarity Gene Crumbs in Amyloid Beta 42 (Aβ42) Mediated Neurodegeneration. PLoS ONE, 2013, 8, e78717.	1.1	26
25	The wings ofBombyx mori develop from larval discs exhibiting an early differentiated state: a preliminary report. Journal of Biosciences, 2001, 26, 167-177.	O.5	22
26	Homeotic Gene teashirt (tsh) Has a Neuroprotective Function in Amyloid-Beta 42 Mediated Neurodegeneration. PLoS ONE, 2013, 8, e80829.	1.1	21
27	Opposing interactions between homothorax and Lobe define the ventral eye margin of Drosophila eye. Developmental Biology, 2011, 359, 199-208.	0.9	18
28	Domain specific genetic mosaic system in the <i>Drosophila</i> eye. Genesis, 2013, 51, 68-74.	0.8	18
29	Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye. Cell Death and Disease, 2016, 7, e2566-e2566.	2.7	18
30	Drosophila C-terminal Src kinase regulates growth via the Hippo signaling pathway. Developmental Biology, 2015, 397, 67-76.	0.9	16
31	Drosophila as an emerging model to study metastasis. Genome Biology, 2004, 5, 216.	13.9	13
32	Waterâ€Soluble Zinc Porphyrin Capable of Lightâ€Induced Photocleavage of DNA: Cell Localization Studies in <i>Drosophila Melanogaster</i> and Light Activated Treatment of Lung Cancer Cells. European Journal of Inorganic Chemistry, 2017, 2017, 153-159.	1.0	12
33	Unraveling Alzheimer's Disease Using Drosophila. , 2019, , 251-277.		10
34	A Two-Clone Approach to Study Signaling Interactions among Neuronal Cells in a Pre-clinical Alzheimer's Disease Model. IScience, 2020, 23, 101823.	1.9	8
35	Tep1 Regulates Yki Activity in Neural Stem Cells in Drosophila Glioma Model. Frontiers in Cell and Developmental Biology, 2020, 8, 306.	1.8	8
36	Toxicity and localization studies of a potential photodynamic therapy agent in <i>Drosophila</i> . Genesis, 2014, 52, 309-314.	0.8	7

#	Article	IF	CITATIONS
37	Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells. PLoS ONE, 2016, 11, e0158081.	1.1	7
38	Markers and Methods to Study Adult Midgut Stem Cells. Methods in Molecular Biology, 2018, 1842, 123-137.	0.4	3
39	Yorkie-Cactus (lκBα)-JNK axis promotes tumor growth and progression in Drosophila. Oncogene, 2021, 40, 4124-4136.	2.6	3
40	Drosophila Cancer Modeling Using the Eye Imaginal Discs. , 2020, , 259-291.		2
41	Drosophila Eye as a Model to Study Regulation of Growth Control: The Discovery of Size Control Pathways. , 2013, , 229-270.		1
42	Annual Drosophila Research Conference, 2011. Developmental Dynamics, 2011, 240, 2042-2050.	0.8	0
43	Annual Drosophila Research Conference, 2012. Developmental Dynamics, 2012, 241, 1227-1236.	0.8	0
44	The Hippo pathway effector Yki downregulates Wg signaling to promote retinal differentiation in the Drosophila eye. Journal of Cell Science, 2015, 128, e1206-e1206.	1.2	0
45	Drosophila Eye as a Model to Study Regulation of Growth Control: The Discovery of Size Control Pathways. , 2020, , 215-257.		Ο