Yunqing Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8352862/publications.pdf

Version: 2024-02-01

623734 580821 29 754 14 25 citations g-index h-index papers 34 34 34 1221 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nature Biotechnology, 2020, 38, 1203-1210.	17.5	103
2	Extra-Large G Proteins Expand the Repertoire of Subunits in Arabidopsis Heterotrimeric G Protein Signaling. Plant Physiology, 2015, 169, 512-529.	4.8	97
3	A Soybean Dual-Specificity Kinase, GmSARK, and Its Arabidopsis Homolog, AtSARK, Regulate Leaf Senescence through Synergistic Actions of Auxin and Ethylene Â. Plant Physiology, 2011, 157, 2131-2153.	4.8	79
4	The G Protein $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Subunit, AGB1, Interacts with FERONIA in RALF1-Regulated Stomatal Movement. Plant Physiology, 2018, 176, 2426-2440.	4.8	77
5	cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. Journal of Experimental Botany, 2010, 61, 1655-1669.	4.8	56
6	Interâ€relationships between the heterotrimeric Gβ subunit AGB1, the receptorâ€like kinase FERONIA, and RALF1 in salinity response. Plant, Cell and Environment, 2018, 41, 2475-2489.	5.7	42
7	Divergent gene expression networks underlie morphological diversity of abscission zones in grasses. New Phytologist, 2020, 225, 1799-1815.	7. 3	38
8	The heterotrimeric <scp>G</scp> â€protein <i>β</i> subunit, <scp>AGB</scp> 1, plays multiple roles in the <scp><i>A</i> </scp> <i>rabidopsis</i> salinity response. Plant, Cell and Environment, 2015, 38, 2143-2156.	5.7	37
9	Preparation of Epidermal Peels and Guard Cell Protoplasts for Cellular, Electrophysiological, and -Omics Assays of Guard Cell Function. Methods in Molecular Biology, 2016, 1363, 89-121.	0.9	30
10	A kinaseâ€dead version of <scp>FERONIA</scp> receptorâ€like kinase has doseâ€dependent impacts on rosette morphology and <scp>RALF</scp> 1â€mediated stomatal movements. FEBS Letters, 2018, 592, 3429-3437.	2.8	25
11	Tissue-specific changes in the RNA structurome mediate salinity response in <i>Arabidopsis</i> Rna, 2020, 26, 492-511.	3.5	25
12	The effect of NaCl on stomatal opening in Arabidopsis wild type and <i>agb1</i> heterotrimeric G-protein mutant plants. Plant Signaling and Behavior, 2016, 11, e1085275.	2.4	24
13	Sterile Spikelets Contribute to Yield in Sorghum and Related Grasses. Plant Cell, 2020, 32, 3500-3518.	6.6	19
14	The anatomy of abscission zones is diverse among grass species. American Journal of Botany, 2020, 107, 549-561.	1.7	18
15	OsKNAT7 Bridges Secondary Cell Wall Formation and Cell Growth Regulation. Plant Physiology, 2019, 181, 385-386.	4.8	9
16	The Streptochaeta Genome and the Evolution of the Grasses. Frontiers in Plant Science, 2021, 12, 710383.	3.6	8
17	Prohibitin Shuttles Between Mitochondria and the Nucleus to Control Genome Stability During the Cell Cycle. Plant Physiology, 2019, 179, 1435-1436.	4.8	7
18	Pleiotropic and nonredundant effects of an auxin importer in <i>Setaria</i> and maize. Plant Physiology, 2022, 189, 715-734.	4.8	7

#	Article	IF	CITATIONS
19	<i>Liguleless1</i> , a Conserved Gene Regulating Leaf Angle and a Target for Yield Improvement in Wheat. Plant Physiology, 2019, 181, 4-5.	4.8	6
20	Metabolite Transporter Regulation of ABA Function and Guard Cell Response. Molecular Plant, 2014, 7, 1505-1507.	8.3	5
21	Remorins: Essential Regulators in Plant-Microbe Interaction and Cell Death Induction. Plant Physiology, 2020, 183, 435-436.	4.8	4
22	Paving the Way for C4 Evolution: Study of C3-C4 Intermediate Species in Grasses. Plant Physiology, 2020, 182, 453-454.	4.8	3
23	CYCLOIDEA3 Is Targeted by Disparate Transcription Factors in Patterning Flowers in Gerbera. Plant Physiology, 2020, 184, 1214-1216.	4.8	3
24	Functional Principal Component Analysis: A Robust Method for Time-Series Phenotypic Data. Plant Physiology, 2020, 183, 1422-1423.	4.8	3
25	LACCASE2 Negatively Regulates Lignin Deposition of Arabidopsis Roots. Plant Physiology, 2020, 182, 1190-1191.	4.8	3
26	A Novel Role of Ring Chromosomes as Evolutionary Drivers of Herbicide Resistance. Plant Physiology, 2018, 176, 1892-1893.	4.8	1
27	Cellulose Synthase Stoichiometry Varies among Species and Tissues. Plant Physiology, 2018, 177, 873-874.	4.8	1
28	New Interacting Partners of BLADE-ON-PETIOLE in Regulation of Plant Development. Plant Physiology, 2019, 180, 697-698.	4.8	0
29	Diverse Strategies Coping with Winter in Barley and its Relatives. Plant Physiology, 2019, 180, 5-6.	4.8	O