Jennifer H Gunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8352840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isomeric lipid signatures reveal compartmentalized fatty acid metabolism in cancer. Journal of Lipid Research, 2022, 63, 100223.	2.0	10
2	TGFβ and CIS Inhibition Overcomes NK-cell Suppression to Restore Antitumor Immunity. Cancer Immunology Research, 2022, 10, 1047-1054.	1.6	11
3	The long non-coding RNA GHSROS reprograms prostate cancer cell lines toward a more aggressive phenotype. PeerJ, 2021, 9, e10280.	0.9	5
4	Leptin antagonism inhibits prostate cancer xenograft growth and progression. Endocrine-Related Cancer, 2021, 28, 353-375.	1.6	6
5	Allele-Specific MicroRNA-Mediated Regulation of a Glycolysis Gatekeeper PDK1 in Cancer Metabolism. Cancers, 2021, 13, 3582.	1.7	8
6	Studying the Metabolism of Epithelial-Mesenchymal Plasticity Using the Seahorse XFe96 Extracellular Flux Analyzer. Methods in Molecular Biology, 2021, 2179, 327-340.	0.4	7
7	Synthesis of a Unique Psammaplysin F Library and Functional Evaluation in Prostate Cancer Cells by Multiparametric Quantitative Single Cell Imaging. Journal of Natural Products, 2020, 83, 2357-2366.	1.5	13
8	Revisiting Glycogen in Cancer: A Conspicuous and Targetable Enabler of Malignant Transformation. Frontiers in Oncology, 2020, 10, 592455.	1.3	24
9	Class IIa Histone Deacetylases Drive Toll-like Receptor-Inducible Glycolysis and Macrophage Inflammatory Responses via Pyruvate Kinase M2. Cell Reports, 2020, 30, 2712-2728.e8.	2.9	51
10	Disruption of Glycogen Utilization Markedly Improves the Efficacy of Carboplatin against Preclinical Models of Clear Cell Ovarian Carcinoma. Cancers, 2020, 12, 869.	1.7	7
11	Insulin Enhances Migration and Invasion in Prostate Cancer Cells by Up-Regulation of FOXC2. Frontiers in Endocrinology, 2019, 10, 481.	1.5	22
12	Emergence of MicroRNAs as Key Players in Cancer Cell Metabolism. Clinical Chemistry, 2019, 65, 1090-1101.	1.5	53
13	A molecular portrait of epithelial–mesenchymal plasticity in prostate cancer associated with clinical outcome. Oncogene, 2019, 38, 913-934.	2.6	76
14	Bclâ€2 inhibitors enhance FGFR inhibitorâ€induced mitochondrialâ€dependent cell death in FGFR2â€mutant endometrial cancer. Molecular Oncology, 2019, 13, 738-756.	2.1	12
15	Abstract LB-B31: FGFR inhibition in endometrial cancer induces caspase-independent cell death that can be augmented with ABT-737. , 2018, , .		0
16	Abstract 2452: Dysregulated expression of the human long noncoding RNAGHSROSmay influence prostate cancer progression and resistance to docetaxel. , 2018, , .		0
17	Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene, 2017, 36, 3417-3427.	2.6	68
18	PNFBA-08 NOVEL IN VITRO ORGANOID TECHNOLOGY TO FACILITATE A PRECISION MEDICINE APPROACH IN THEÂMANAGEMENT OF MEN WITH BIOCHEMICAL RECURRENCE OF PROSTATE CANCER. Journal of Urology, 2017, 197, .	0.2	0

Jennifer H Gunter

#	Article	IF	CITATIONS
19	Abstract 3442: The long non-coding RNAGHSROSmediates expression of genes associated with tumor growth, metastasis and adverse disease outcome. , 2017, , .		0
20	Abstract 4909: Androgen targeted therapy induces ZEB1 expression and is associated with suppression of androgen signalling and therapy resistance. , 2017, , .		1
21	MP07-18 PERSISTENCE OF CIRCULATING TUMOUR CELLS (CTCS) IN MEN TREATED WITH ANDROGEN DEPRIVATION THERAPY CAN BE USED TO ENRICH AND PROPAGATE TEMPORARY PERSONALIZED CELL LINES. Journal of Urology, 2016, 195, .	0.2	0
22	Repositioning "old―drugs for new causes: identifying new inhibitors of prostate cancer cell migration and invasion. Clinical and Experimental Metastasis, 2016, 33, 385-399.	1.7	21
23	Adverse effects of androgenâ€deprivation therapy in prostate cancer and their management. BJU International, 2015, 115, 3-13.	1.3	109
24	The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget, 2014, 5, 9362-9381.	0.8	111
25	IGF2 increases de novo steroidogenesis in prostate cancer cells. Endocrine-Related Cancer, 2013, 20, 173-186.	1.6	48
26	New Players for Advanced Prostate Cancer and the Rationalisation of Insulin-Sensitising Medication. International Journal of Cell Biology, 2013, 2013, 1-13.	1.0	30
27	The Interactions between Insulin and Androgens in Progression to Castrate-Resistant Prostate Cancer. Advances in Urology, 2012, 2012, 1-11.	0.6	24
28	Different Characteristics and Nucleotide Binding Properties of Inosine Monophosphate Dehydrogenase (IMPDH) Isoforms. PLoS ONE, 2012, 7, e51096.	1.1	71
29	Insulin Increases <i>De Novo</i> Steroidogenesis in Prostate Cancer Cells. Cancer Research, 2011, 71, 5754-5764.	0.4	97
30	The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia, 2010, 53, 321-330.	2.9	192
31	Inhibition of inosine monophosphate dehydrogenase reduces adipogenesis and diet-induced obesity. Biochemical and Biophysical Research Communications, 2009, 386, 351-355.	1.0	8
32	Characterisation of inosine monophosphate dehydrogenase expression during retinal development: Differences between variants and isoforms. International Journal of Biochemistry and Cell Biology, 2008, 40, 1716-1728.	1.2	56
33	Adverse physicochemical properties of tripalmitin in beta cells lead to morphological changes and lipotoxicity in vitro. Diabetologia, 2005, 48, 1819-1829.	2.9	106
34	Islet amyloid polypeptide gene promoter polymorphisms are not associated with Type 2 diabetes or with the severity of islet amyloidosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 74-78.	1.8	12
35	Apolipoprotein E genotype, islet amyloid deposition and severity of Type 2 diabetes. Diabetes Research and Clinical Practice, 2003, 60, 105-110.	1.1	18