Jie Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/835277/publications.pdf Version: 2024-02-01

LE CHEN

#	Article	IF	CITATIONS
1	Enantioselective Bromoaminocyclization Using Amino–Thiocarbamate Catalysts. Journal of the American Chemical Society, 2011, 133, 9164-9167.	13.7	188
2	An Enantioselective Approach toward 3,4-Dihydroisocoumarin through the Bromocyclization of Styrene-type Carboxylic Acids. Journal of Organic Chemistry, 2012, 77, 999-1009.	3.2	138
3	Conversion of two stereocenters to one or two chiral axes: atroposelective synthesis of 2,3-diarylbenzoindoles. Chemical Science, 2019, 10, 6777-6784.	7.4	116
4	Enantiodivergent and γâ€5elective Asymmetric Allylic Amination. Angewandte Chemie - International Edition, 2012, 51, 2382-2386.	13.8	83
5	A highly enantioselective approach towards 2-substituted 3-bromopyrrolidines. Organic and Biomolecular Chemistry, 2012, 10, 3808.	2.8	75
6	Enantioselective synthesis of 2-substituted and 3-substituted piperidines through a bromoaminocyclization process. Chemical Communications, 2013, 49, 4412-4414.	4.1	74
7	Construction of Axially Chiral Compounds via Centralâ€toâ€Axial Chirality Conversion. Chemistry - an Asian Journal, 2020, 15, 2939-2951.	3.3	56
8	Recent Progress in the Asymmetric Intermolecular Halogenation of Alkenes. Synthesis, 2014, 46, 586-595.	2.3	54
9	Enantioselective Reactions Catalyzed by Nâ€Heterocyclic Carbenes. Asian Journal of Organic Chemistry, 2018, 7, 54-69.	2.7	54
10	<i>N</i> -Bromosuccinimide Initiated One-Pot Synthesis of Imidazoline. Organic Letters, 2011, 13, 2448-2451.	4.6	51
11	Organocatalytic cycloaddition of alkynylindoles with azonaphthalenes for atroposelective construction of indole-based biaryls. Nature Communications, 2022, 13, 632.	12.8	46
12	Asymmetric Arylative Dearomatization of βâ€Naphthols Catalyzed by a Chiral Phosphoric Acid. Chemistry - A European Journal, 2017, 23, 5381-5385.	3.3	44
13	N-Bromosuccinimide Promoted One-Pot Synthesis of Guanidine: Scope and Mechanism. Organic Letters, 2011, 13, 5804-5807.	4.6	43
14	Enantioselective [3 + 2] Formal Cycloaddition of 1-Styrylnaphthols with Quinones Catalyzed by a Chiral Phosphoric Acid. Organic Letters, 2018, 20, 2929-2933.	4.6	37
15	Asymmetric Synthesis of Quinoline-Naphthalene Atropisomers by Central-to-Axial Chirality Conversion. Organic Letters, 2020, 22, 8894-8898.	4.6	37
16	Total Synthesis and Correct Absolute Configuration of Malyngamide U. Journal of Organic Chemistry, 2007, 72, 2344-2350.	3.2	36
17	Organocatalytic cycloaddition–elimination cascade for atroposelective construction of heterobiaryls. Chemical Science, 2021, 12, 14920-14926.	7.4	36
18	Enantioselective Organocatalytic Sulfenylation of β-Naphthols. Journal of Organic Chemistry, 2018, 83, 4730-4738.	3.2	34

Jie Chen

#	Article	IF	CITATIONS
19	A Convergent Route for the Total Synthesis of Malyngamides O, P, Q, and R. Journal of Organic Chemistry, 2009, 74, 4149-4157.	3.2	33
20	<i>N</i> -Heterocyclic Carbene Catalyzed Intramolecular Acylation of Allylic Electrophiles. Organic Letters, 2014, 16, 2904-2907.	4.6	33
21	<i>N</i> -Heterocyclic Carbene Catalyzed Sulfenylation of α,β-Unsaturated Aldehydes. Organic Letters, 2016, 18, 5708-5711.	4.6	31
22	An Improved Asymmetric Synthesis of Malyngamide U and Its 2′-Epimer. Journal of Organic Chemistry, 2008, 73, 6873-6876.	3.2	30
23	Palladium-Catalyzed Site-Selective C(sp ³)–H Arylation of Phenylacetaldehydes. Organic Letters, 2019, 21, 7084-7088.	4.6	28
24	Scope and Mechanistic Studies of Electrophilic Alkoxyetherification. Organic Letters, 2011, 13, 6456-6459.	4.6	27
25	Construction of Bisbenzopyrone via N-Heterocyclic Carbene Catalyzed Intramolecular Hydroacylation–Stetter Reaction Cascade. Organic Letters, 2018, 20, 2676-2679.	4.6	27
26	Catalytic enantioselective bromoamination of allylic alcohols. Chemical Communications, 2014, 50, 13841-13844.	4.1	26
27	First stereoselective synthesis of serinol-derived malyngamides and their 1′-epi-isomers. Tetrahedron: Asymmetry, 2006, 17, 933-941.	1.8	23
28	A Dehydrogenative Diels–Alder Reaction of Prenyl Derivatives with 2,3â€Dichloroâ€5,6â€dicyanobenzoquinone. Advanced Synthesis and Catalysis, 2015, 357, 940-944.	4.3	23
29	Total Synthesis of Malyngamides K, L, and 5′′- <i>epi</i> -C and Absolute Configuration of Malyngamide L. Journal of Organic Chemistry, 2011, 76, 3946-3959.	3.2	22
30	<i>N</i> -Heterocyclic Carbene Catalyzed Stereoselective Glycosylation of 2-Nitrogalactals. Organic Letters, 2017, 19, 5272-5275.	4.6	21
31	Chiral Phosphoric-Acid-Catalyzed Cascade Prins Cyclization. Organic Letters, 2019, 21, 7143-7148.	4.6	21
32	Variants in multiple genes polymorphism association analysis of COPD in the Chinese Li population. International Journal of COPD, 2015, 10, 1455.	2.3	20
33	Nâ€Heterocyclic Carbeneâ€Catalyzed Intramolecular Nucleophilic Substitution: Enantioselective Construction of Allâ€Carbon Quaternary Stereocenters. Chemistry - A European Journal, 2017, 23, 2783-2787.	3.3	20
34	Bromoform reaction of tertiary amines with N,N-dibromosulfonamides or NBS/sulfonamides. Chemical Communications, 2014, 50, 12367-12370.	4.1	18
35	Phenanthrene Synthesis by Palladium(II)-Catalyzed γ-C(sp ²)–H Arylation, Cyclization, and Migration Tandem Reaction. Organic Letters, 2019, 21, 80-84.	4.6	18
36	Total synthesis of malyngamide M and isomalyngamide M. Tetrahedron, 2010, 66, 3499-3507.	1.9	14

JIE CHEN

#	Article	IF	CITATIONS
37	Progress on the total synthesis of natural products in China: From 2006 to 2010. Science China Chemistry, 2012, 55, 1175-1212.	8.2	10
38	Copper(I)/DDQ-Mediated Double-Dehydrogenative Diels–Alder Reaction of Aryl Butenes with 1,4-Diketones and Indolones. Organic Letters, 2020, 22, 7169-7174.	4.6	9
39	Hydrogen Bond Assisted Central-to-Spiro Chirality Transfer and Central-to-Axial Chirality Conversion: Asymmetric Synthesis of Spirocycles. Organic Letters, 2021, 23, 9315-9320.	4.6	9
40	Enantioselective Chloroâ€ <i>O</i> yclization of Unsaturated <i>N</i> â€Tosylcarbamates. Advanced Synthesis and Catalysis, 2017, 359, 1295-1300.	4.3	8
41	Metal-Free Dehydrogenative Diels–Alder Reactions of Prenyl Derivatives with Dienophiles via a Thermal Reversible Process. Organic Letters, 2018, 20, 5774-5778.	4.6	8
42	Synthesis of Tetrahydroisoindolinones via a Metalâ€Free Dehydrogenative Dielsâ€Alder Reaction. Advanced Synthesis and Catalysis, 2019, 361, 2268-2273.	4.3	8
43	Selectfluor-Mediated Stereoselective [1 + 1 + 4 + 4] Dimerization of Styrylnaphthols. Organic Letters, 2019, 21, 9829-9835.	4.6	7
44	Regioselective Bromocyclization of Unsaturated N-Tosylcarbamates Promoted by N,N-Dibromosulfonamides. Synlett, 2014, 25, 1921-1925.	1.8	6
45	BF3·Et2O catalyzed allylation of oxindoles with allyl trichloroacetimidate. Tetrahedron Letters, 2015, 56, 1501-1504.	1.4	3
46	Metal-Free Amidation of Ethers with N,N-Dibromosulfonamides. Synlett, 2016, 27, 1438-1442.	1.8	3
47	Access to Sulfides through Free Radical Reaction of Vinyl Halides with Thiols. Asian Journal of Organic Chemistry, 2019, 8, 161-170.	2.7	3
48	N-Heterocyclic Carbene Catalyzed Stereoselective Synthesis of 2-Nitro-thiogalactosides. Synthesis, 2019, 51, 3451-3461.	2.3	2
49	N,N-Dibromosulfonamides: Versatile Reagents in Organic Synthesis. Current Organic Chemistry, 2016, 20, 2083-2098.	1.6	2
50	A Dehydrogenative Inverse Electron Demand Diels–Alder Reaction for the Synthesis of Functionalized Pyranones. Organic Letters, 2022, 24, 4316-4321.	4.6	2
51	An Efficient Synthesis of Functionalized Pyrrolidines and 5-epi-Hyacinthacine A4 from d-Glucose. Synthesis, 2007, 2007, 1359-1365.	2.3	1
52	Scandium Triflate Catalyzed Tandem Transfer Hydrogenation and Cyclization Reaction of <i>o</i> -Aminobenzaldehydes and <i>o</i> -Aminoacetophenone with Alcohols. Journal of Organic Chemistry, 2021, 86, 17673-17683.	3.2	1
53	A Stereoselective Synthesis of (4E,7S)-(-)-7-Methoxydodec-4-enoic Acid. Synthesis, 2006, 2006, 320-324.	2.3	о