Samuel Soubeyrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8352701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-Distance Wind-Dispersal of Spores in a Fungal Plant Pathogen: Estimation of Anisotropic Dispersal Kernels from an Extensive Field Experiment. PLoS ONE, 2014, 9, e103225.	2.5	94
2	Using Early Data to Estimate the Actual Infection Fatality Ratio from COVID-19 in France. Biology, 2020, 9, 97.	2.8	84
3	A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133251.	2.6	76
4	Sharka Epidemiology and Worldwide Management Strategies: Learning Lessons to Optimize Disease Control in Perennial Plants. Annual Review of Phytopathology, 2015, 53, 357-378.	7.8	76
5	Inferring pathogen dynamics from temporal count data: the emergence of <i>Xylella fastidiosa</i> in France is probably not recent. New Phytologist, 2018, 219, 824-836.	7.3	63
6	Impact of Lockdown on the Epidemic Dynamics of COVID-19 in France. Frontiers in Medicine, 2020, 7, 274.	2.6	52
7	Identifying Lookouts for Epidemio-Surveillance: Application to the Emergence of <i>Xylella fastidiosa</i> in France. Phytopathology, 2019, 109, 265-276.	2.2	37
8	Parameter estimation for reactionâ€diffusion models of biological invasions. Population Ecology, 2014, 56, 427-434.	1.2	33
9	A statistical-reaction–diffusion approach for analyzing expansion processes. Journal of Theoretical Biology, 2011, 274, 43-51.	1.7	30
10	Autoinfection in wheat leaf rust epidemics. New Phytologist, 2008, 177, 1001-1011.	7.3	28
11	Accounting for roughness of circular processes: Using Gaussian random processes to model the anisotropic spread of airborne plant disease. Theoretical Population Biology, 2008, 73, 92-103.	1.1	27
12	Mapping Rainfall Feedback to Reveal the Potential Sensitivity of Precipitation to Biological Aerosols. Bulletin of the American Meteorological Society, 2017, 98, 1109-1118.	3.3	26
13	Dating and localizing an invasion from post-introduction data and a coupled reaction–diffusion–absorption model. Journal of Mathematical Biology, 2019, 79, 765-789.	1.9	24
14	A parsimonious approach for spatial transmission and heterogeneity in the COVID-19 propagation. Royal Society Open Science, 2020, 7, 201382.	2.4	23
15	Modelling the spread in space and time of an airborne plant disease. Journal of the Royal Statistical Society Series C: Applied Statistics, 2008, 57, 253-272.	1.0	21
16	Assessing the Mismatch Between Incubation and Latent Periods for Vector-Borne Diseases: The Case of Sharka. Phytopathology, 2015, 105, 1408-1416.	2.2	20
17	Exploiting Genetic Information to Trace Plant Virus Dispersal in Landscapes. Annual Review of Phytopathology, 2017, 55, 139-160.	7.8	19
18	Using sensitivity analysis to identify key factors for the propagation of a plant epidemic. Royal Society Open Science, 2018, 5, 171435.	2.4	18

SAMUEL SOUBEYRAND

#	Article	IF	CITATIONS
19	One Health concepts and challenges for surveillance, forecasting, and mitigation of plant disease beyond the traditional scope of crop production. Plant Pathology, 2022, 71, 86-97.	2.4	18
20	Improving Management Strategies of Plant Diseases Using Sequential Sensitivity Analyses. Phytopathology, 2019, 109, 1184-1197.	2.2	17
21	Patchy patterns due to group dispersal. Journal of Theoretical Biology, 2011, 271, 87-99.	1.7	16
22	Assessing the Aerial Interconnectivity of Distant Reservoirs of Sclerotinia sclerotiorum. Frontiers in Microbiology, 2018, 9, 2257.	3.5	14
23	Inferring epidemiological links from deep sequencing data: a statistical learning approach for human, animal and plant diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180258.	4.0	14
24	Rearranging agricultural landscapes towards habitat quality optimisation: In silico application to pest regulation. Ecological Complexity, 2016, 28, 113-122.	2.9	13
25	Inferring long-distance connectivity shaped by air-mass movement for improved experimental design in aerobiology. Scientific Reports, 2021, 11, 11093.	3.3	12
26	Evolution of dispersal in asexual populations: to be independent, clumped or grouped?. Evolutionary Ecology, 2015, 29, 947-963.	1.2	11
27	A Spatioâ€Temporal Exposureâ€Hazard Model for Assessing Biological Risk and Impact. Risk Analysis, 2019, 39, 54-70.	2.7	11
28	Towards unified and real-time analyses of outbreaks at country-level during pandemics. One Health, 2020, 11, 100187.	3.4	11
29	When the average hides the risk of Bt-corn pollen on non-target Lepidoptera: Application to Aglais io in Catalonia. Ecotoxicology and Environmental Safety, 2021, 207, 111215.	6.0	11
30	Analysis of fragmented time directionality in time series to elucidate feedbacks in climate data. Environmental Modelling and Software, 2014, 61, 78-86.	4.5	10
31	Spatial exposure-hazard and landscape models for assessing the impact of GM crops on non-target organisms. Science of the Total Environment, 2018, 624, 470-479.	8.0	10
32	A Frailty Model to Assess Plant Disease Spread from Individual Count Data. Journal of Data Science, 2007, 5, 67-83.	0.9	9
33	Approximate Bayesian computation with functional statistics. Statistical Applications in Genetics and Molecular Biology, 2013, 12, 17-37.	0.6	8
34	COVID-19 mortality dynamics: The future modelled as a (mixture of) past(s). PLoS ONE, 2020, 15, e0238410.	2.5	8
35	Strain diversity and spatial distribution areÂlinked to epidemic dynamics in host populations. American Naturalist, 2022, 199, 59-74.	2.1	8
36	Weak convergence of posteriors conditional on maximum pseudo-likelihood estimates and implications in ABC. Statistics and Probability Letters, 2015, 107, 84-92.	0.7	7

SAMUEL SOUBEYRAND

#	Article	IF	CITATIONS
37	Testing Differences Between Pathogen Compositions with Small Samples and Sparse Data. Phytopathology, 2017, 107, 1199-1208.	2.2	7
38	Monte Carlo testing in spatial statistics, with applications to spatial residuals. Spatial Statistics, 2016, 18, 40-53.	1.9	6
39	A Nonstationary Cylinder–Based Model Describing Group Dispersal in a Fragmented Habitat. Stochastic Models, 2014, 30, 48-67.	0.5	5
40	Analyzing the Influence of Landscape Aggregation on Disease Spread to Improve Management Strategies. Phytopathology, 2019, 109, 1198-1207.	2.2	5
41	Residual-based specification of the random-effects distribution for cluster data. Statistical Methodology, 2006, 3, 464-482.	0.5	4
42	Model-based estimation of the link between the daily survival probability and a time-varying covariate, application to mosquitofish survival data. Mathematical Biosciences, 2007, 210, 508-522.	1.9	4
43	Regression-Based Ranking of Pathogen Strains with Respect to Their Contribution to Natural Epidemics. PLoS ONE, 2014, 9, e86591.	2.5	4
44	On parameter estimation for doubly inhomogeneous cluster point processes. Spatial Statistics, 2017, 20, 191-205.	1.9	4
45	Residual-based specification of a hidden random field included in a hierarchical spatial model. Computational Statistics and Data Analysis, 2007, 51, 6404-6422.	1.2	3
46	Exploring Spatial and Multitype Assemblages of Species Abundances. Biometrical Journal, 2009, 51, 979-995.	1.0	3
47	Equilibrium and sensitivity analysis of a spatio-temporal host-vector epidemic model. Nonlinear Analysis: Real World Applications, 2021, 57, 103194.	1.7	3
48	<scp>PESO</scp> : a modelling framework to help improve management strategies for epidemics – application to sharka. EPPO Bulletin, 2017, 47, 231-236.	0.8	2
49	When Group Dispersal and Allee Effect Shape Metapopulation Dynamics. Annales Zoologici Fennici, 2017, 54, 123-138.	0.6	2
50	Extension of the spatially―and temporallyâ€explicit "briskaRâ€NTL―model to assess potential adverse effects of Btâ€maize pollen on nonâ€ŧarget Lepidoptera at landscape level. EFSA Supporting Publications, 2021, 18, 6443E.	0.7	2
51	Spatial statistics and stochastic partial differential equations: A mechanistic viewpoint. Spatial Statistics, 2022, , 100591.	1.9	2
52	Aggregation patterns in hierarchy/proximity spaces. Ecological Complexity, 2010, 7, 21-31.	2.9	1
53	Goodness-of-fit test of the mark distribution in a point process with non-stationary marks. Statistics and Computing, 2012, 22, 931-943.	1.5	0
54	Quick inference for log Gaussian Cox processes with non-stationary underlying random fields. Spatial Statistics, 2019, 33, 100388.	1.9	0