
Mikhail E Itkis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8352663/publications.pdf Version: 2024-02-01

MIKHAII F ITRIS

#	Article	IF	CITATIONS
1	Nitric Acid Purification of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2003, 107, 13838-13842.	2.6	472
2	Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films. Science, 2006, 312, 413-416.	12.6	446
3	Electronic Properties of Single-Walled Carbon Nanotube Networks. Journal of the American Chemical Society, 2005, 127, 5990-5995.	13.7	363
4	MoS ₂ -Based Optoelectronic Gas Sensor with Sub-parts-per-billion Limit of NO ₂ Gas Detection. ACS Nano, 2019, 13, 3196-3205.	14.6	349
5	Comparison of Analytical Techniques for Purity Evaluation of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127, 3439-3448.	13.7	309
6	High Energy Density Supercapacitor Based on a Hybrid Carbon Nanotube–Reduced Graphite Oxide Architecture. Advanced Energy Materials, 2012, 2, 438-444.	19.5	182
7	Effect of Covalent Chemistry on the Electronic Structure and Properties of Carbon Nanotubes and Graphene. Accounts of Chemical Research, 2013, 46, 65-76.	15.6	161
8	Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Applied Physics Letters, 2006, 89, 133102.	3.3	146
9	Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites. Scientific Reports, 2013, 3, .	3.3	135
10	Bistability and the Phase Transition in 1,3,2-Dithiazolo[4,5-b]pyrazin-2-yl. Journal of the American Chemical Society, 2004, 126, 14692-14693.	13.7	120
11	Resonance-Stabilized 1,2,3-Dithiazolo-1,2,3-dithiazolyls as Neutral π-Radical Conductors. Journal of the American Chemical Society, 2002, 124, 9498-9509.	13.7	103
12	Thermal Conductivity Measurements of Semitransparent Single-Walled Carbon Nanotube Films by a Bolometric Technique. Nano Letters, 2007, 7, 900-904.	9.1	100
13	Fast Electrochromic Device Based on Single-Walled Carbon Nanotube Thin Films. Nano Letters, 2016, 16, 5386-5393.	9.1	77
14	lonic Liquid Gating of Suspended MoS ₂ Field Effect Transistor Devices. Nano Letters, 2015, 15, 5284-5288.	9.1	71
15	Visible-Blind UV Photodetector Based on Single-Walled Carbon Nanotube Thin Film/ZnO Vertical Heterostructures. ACS Applied Materials & Interfaces, 2017, 9, 37094-37104.	8.0	67
16	Hysteretic Spin and Charge Delocalization in a Phenalenyl-Based Molecular Conductor. Journal of the American Chemical Society, 2010, 132, 17258-17264.	13.7	64
17	Confined Lithium–Sulfur Reactions in Narrow-Diameter Carbon Nanotubes Reveal Enhanced Electrochemical Reactivity. ACS Nano, 2018, 12, 9775-9784.	14.6	61
18	ZnO growth on Si with low-temperature ZnO buffer layers by ECR-assisted MBE. Journal of Crystal Growth, 2006, 286, 61-65.	1.5	57

MIKHAIL E ITKIS

#	Article	IF	CITATIONS
19	Single-Walled Carbon Nanotube Thin Film Emitterâ^'Detector Integrated Optoelectronic Device. Nano Letters, 2008, 8, 2224-2228.	9.1	45
20	Giant Raman Response to the Encapsulation of Sulfur in Narrow Diameter Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2016, 138, 40-43.	13.7	43
21	Effect of Atomic Interconnects on Percolation in Single-Walled Carbon Nanotube Thin Film Networks. Nano Letters, 2014, 14, 3930-3937.	9.1	42
22	Chemical approach to the realization of electronic devices in epitaxial graphene. Physica Status Solidi - Rapid Research Letters, 2009, 3, 184-186.	2.4	39
23	Structure–property trends in π-stacked dithiazolo-dithiazolyl conductors. Chemical Communications, 2002, , 2562-2563.	4.1	37
24	Charge-compensated, semiconducting single-walled carbon nanotube thin film as an electrically configurable optical medium. Nature Photonics, 2013, 7, 459-465.	31.4	37
25	Networks of Semiconducting SWNTs: Contribution of Midgap Electronic States to the Electrical Transport. Accounts of Chemical Research, 2015, 48, 2270-2279.	15.6	37
26	Hexahaptoâ€Metal Complexes of Singleâ€Walled Carbon Nanotubes. Macromolecular Chemistry and Physics, 2012, 213, 1001-1019.	2.2	35
27	Enhanced Electrical Conductivity in a Substitutionally Doped Spiro-bis(phenalenyl)boron Radical Molecular Solid. Journal of the American Chemical Society, 2014, 136, 14738-14741.	13.7	30
28	Effect of first row transition metals on the conductivity of semiconducting single-walled carbon nanotube networks. Applied Physics Letters, 2012, 100, .	3.3	28
29	Covalent Atomic Bridges Enable Unidirectional Enhancement of Electronic Transport in Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 2019, 11, 19315-19323.	8.0	27
30	Enhanced Electromodulation of Infrared Transmittance in Semitransparent Films of Large Diameter Semiconducting Single-Walled Carbon Nanotubes. Nano Letters, 2010, 10, 937-942.	9.1	26
31	Solidâ€state Bisâ€hexahaptoâ€metal complexation of singleâ€walled carbon nanotubes. Journal of Physical Organic Chemistry, 2012, 25, 607-610.	1.9	26
32	Enhanced photosensitivity of electro-oxidized epitaxial graphene. Applied Physics Letters, 2011, 98, .	3.3	21
33	Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers. Scientific Reports, 2015, 5, 13108.	3.3	20
34	High Modulation Speed, Depth, and Coloration Efficiency of Carbon Nanotube Thin Film Electrochromic Device Achieved by Counter Electrode Impedance Matching. Advanced Materials Interfaces, 2018, 5, 1800861.	3.7	19
35	Sulfur and selenium substituted spiro-biphenalenyl-boron neutral radicals. Journal of Materials Chemistry, 2012, 22, 8245.	6.7	17
36	Nonlocal spin transport in single-walled carbon nanotube networks. Physical Review B, 2012, 85, .	3.2	16

MIKHAIL E ITKIS

#	Article	IF	CITATIONS
37	Band Structure Engineering by Substitutional Doping in Solid-State Solutions of [5-Me-PLY(O,O)] ₂ B _(1–<i>x</i>) Be _{<i>x</i>} Radical Crystals. Journal of the American Chemical Society, 2015, 137, 10000-10008.	13.7	16
38	A 1,2,3,5-dithiadiazolyl dimeric radical cation. Preparation and solid state characterization of 1,3-[(S2N2C)C6H4(CN2S2)]2[Cl]3. CrystEngComm, 2002, 4, 205.	2.6	11
39	Synthesis, structure and solid state properties of benzannulated phenalenyl based neutral radical conductor. Journal of Physical Organic Chemistry, 2012, 25, 566-573.	1.9	11
40	Mesocrystalline Ordering and Phase Transformation of Iron Oxide Biominerals in the Ultrahard Teeth of <i>Cryptochiton stelleri</i> . Small Structures, 2022, 3, .	12.0	11
41	Unexpected Competition between Antiferromagnetic and Ferromagnetic States in Hf ₂ MnRu ₅ B ₂ : Predicted and Realized. Inorganic Chemistry, 2017, 56, 12674-12677.	4.0	10
42	Effect of constructive rehybridization on transverse conductivity of aligned single-walled carbon nanotube films. Materials Today, 2018, 21, 937-943.	14.2	10
43	Fe _{5â~<i>x</i>} Ge ₂ Te ₂ —a New Exfoliable Itinerant Ferromagnet with High Curie Temperature and Large Perpendicular Magnetic Anisotropy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900666.	2.4	9
44	Effect of Lanthanide Metal Complexation on the Properties and Electronic Structure of Single-Walled Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2015, 7, 28013-28018.	8.0	5
45	A Delicate Balance between Antiferromagnetism and Ferromagnetism: Theoretical and Experimental Studies of A ₂ MRu ₅ B ₂ (A=Zr, Hf; M=Fe, Mn) Metal Borides. Chemistry - A European Journal, 2020, 26, 1979-1988.	3.3	5
46	Synthesis, Structure and Solid State Properties of Cyclohexanemethylamine Substituted Phenalenyl Based Molecular Conductor. Crystals, 2012, 2, 446-465.	2.2	4
47	Phenalenyl based neutral radical as a novel electrochromic material modulating visible to short-wave infrared light. RSC Advances, 2018, 8, 42068-42072.	3.6	3
48	Effect of Substitution on the Hysteretic Phase Transition in a Bistable Phenalenylâ€Based Neutral Radical Molecular Conductor. Chemistry - A European Journal, 2019, 25, 4166-4174.	3.3	2
49	Carbon Nanotube Free-Standing Film of Pt/MWNTs as a Bifunctional Component in Hydrogen Proton Exchange Membrane Fuel Cells. Materials Research Society Symposia Proceedings, 2007, 1018, 1.	0.1	Ο