Pauline Po Yee Lui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8352351/publications.pdf Version: 2024-02-01

PALLINE PO YEE LUL

#	Article	IF	CITATIONS
1	Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy—A Target for Intervention. International Journal of Molecular Sciences, 2022, 23, 3571.	4.1	21
2	Increased Risk of Concomitant Meniscal Injuries in Adolescents With Elevated Body Mass Index After Anterior Cruciate Ligament Tear: A Systematic Review. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2022, 38, 3209-3221.	2.7	1
3	Mesenchymal Stem Cell-Derived Extracellular Vesicles for the Promotion of Tendon Repair - an Update of Literature. Stem Cell Reviews and Reports, 2021, 17, 379-389.	3.8	26
4	Inflammatory mechanisms linking obesity and tendinopathy. Journal of Orthopaedic Translation, 2021, 31, 80-90.	3.9	7
5	Tackling the Challenges of Graft Healing After Anterior Cruciate Ligament Reconstruction—Thinking From the Endpoint. Frontiers in Bioengineering and Biotechnology, 2021, 9, 756930.	4.1	10
6	Role of Histone Acetylation and Methylation in Obesity. Current Pharmacology Reports, 2019, 5, 196-203.	3.0	9
7	Biology of Tendon Stem Cells and Tendon in Aging. Frontiers in Genetics, 2019, 10, 1338.	2.3	34
8	Tendinopathy in diabetes mellitus patients—Epidemiology, pathogenesis, and management. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 776-787.	2.9	55
9	Transplantation of tendon-derived stem cells pre-treated with connective tissue growth factor and ascorbic acid in vitro promoted better tendon repair in a patellar tendon window injury rat model. Cytotherapy, 2016, 18, 99-112.	0.7	54
10	Cytotoxic and sublethal effects of silver nanoparticles on tendon-derived stem cells – implications for tendon engineering. Toxicology Research, 2016, 5, 318-330.	2.1	6
11	Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells and Cloning: Advances and Applications, 2015, 8, 163.	2.3	52
12	Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ – update and future development. Stem Cell Research and Therapy, 2015, 6, 106.	5.5	60
13	Peri-tunnel bone loss: does it affect early tendon graft to bone tunnel healing after ACL reconstruction?. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 740-751.	4.2	14
14	Allogeneic Tendon-Derived Stem Cells Promote Tendon Healing and Suppress Immunoreactions in Hosts: <i>In Vivo</i> Model. Tissue Engineering - Part A, 2014, 20, 2998-3009.	3.1	32
15	Immunogenicity and Escape Mechanisms of Allogeneic Tendon-Derived Stem Cells. Tissue Engineering - Part A, 2014, 20, 3010-3020.	3.1	16
16	Application of Tendon-Derived Stem Cell Sheet for the Promotion of Graft Healing in Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2014, 42, 681-689.	4.2	105
17	A Practical Guide for the Isolation and Maintenance of Stem Cells from Tendon. Methods in Molecular Biology, 2014, 1212, 127-140.	0.9	14
18	Scx-Transduced Tendon-Derived Stem Cells (TDSCs) Promoted Better Tendon Repair Compared to Mock-Transduced Cells in a Rat Patellar Tendon Window Injury Model. PLoS ONE, 2014, 9, e97453.	2.5	45

PAULINE PO YEE LUI

#	Article	IF	CITATIONS
19	Higher BMP/Smad sensitivity of tendon-derived stem cells (TDSCs) isolated from the collagenase-induced tendon injury model: possible mechanism for their altered fate in vitro. BMC Musculoskeletal Disorders, 2013, 14, 248.	1.9	19
20	ldentity of tendon stem cells – how much do we know?. Journal of Cellular and Molecular Medicine, 2013, 17, 55-64.	3.6	52
21	Cell therapy for the treatment of tendinopathy – A systematic review on the pre-clinical and clinical evidence. Seminars in Arthritis and Rheumatism, 2013, 42, 651-666.	3.4	21
22	Altered Fate of Tendon-Derived Stem Cells Isolated from a Failed Tendon-Healing Animal Model of Tendinopathy. Stem Cells and Development, 2013, 22, 1076-1085.	2.1	76
23	BMPâ€2 stimulated nonâ€tenogenic differentiation and promoted proteoglycan deposition of tendonâ€derived stem cells (TDSCs) in vitro. Journal of Orthopaedic Research, 2013, 31, 746-753.	2.3	48
24	The Effect of Early Whole-Body Vibration Therapy on Neuromuscular Control After Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2013, 41, 804-814.	4.2	60
25	In Vivo Identity of Tendon Stem Cells and the Roles of Stem Cells in Tendon Healing. Stem Cells and Development, 2013, 22, 3128-3140.	2.1	76
26	Expression of Wnt pathway mediators in metaplasic tissue in animal model and clinical samples of tendinopathy. Rheumatology, 2013, 52, 1609-1618.	1.9	21
27	Histopathological changes in tendinopathypotential roles of BMPs?. Rheumatology, 2013, 52, 2116-2126.	1.9	30
28	Local administration of alendronate reduced periâ€ŧunnel bone loss and promoted graftâ€bone tunnel healing with minimal systemic effect on bone in contralateral knee. Journal of Orthopaedic Research, 2013, 31, 1897-1906.	2.3	20
29	Alendronate reduced peri-tunnel bone loss and enhanced tendon graft to bone tunnel healing in anterior cruciate ligament reconstruction. , 2013, 25, 78-96.		37
30	Hypoxia-Mediated Efficient Expansion of Human Tendon–Derived Stem Cells <i>In Vitro</i> . Tissue Engineering - Part A, 2012, 18, 484-498.	3.1	75
31	Effect of In Vitro Passaging on the Stem Cell-Related Properties of Tendon-Derived Stem Cells—Implications in Tissue Engineering. Stem Cells and Development, 2012, 21, 790-800.	2.1	84
32	Uniaxial mechanical tension promoted osteogenic differentiation of rat tendonâ€derived stem cells (rTDSCs) via the Wnt5aâ€RhoA pathway. Journal of Cellular Biochemistry, 2012, 113, 3133-3142.	2.6	72
33	Comparison of Potentials of Stem Cells Isolated from Tendon and Bone Marrow for Musculoskeletal Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 840-851.	3.1	170
34	A randomized controlled trial comparing bone mineral density changes of three different ACL reconstruction techniques. Knee, 2012, 19, 779-785.	1.6	23
35	Expression of chondro-osteogenic BMPs in clinical samples of patellar tendinopathy. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 1409-1417.	4.2	44
36	Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells. International Orthopaedics, 2012, 36, 1099-1107.	1.9	50

PAULINE PO YEE LUI

#	Article	IF	CITATIONS
37	Ectopic chondroâ€ossification and erroneous extracellular matrix deposition in a tendon window injury model. Journal of Orthopaedic Research, 2012, 30, 37-46.	2.3	35
38	Tendonâ€derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. Journal of Orthopaedic Research, 2012, 30, 613-619.	2.3	177
39	Tendon stem cells: experimental and clinical perspectives in tendon and tendon-bone junction repair. Muscles, Ligaments and Tendons Journal, 2012, 2, 163-8.	0.3	26
40	What are the validated animal models for tendinopathy?. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 3-17.	2.9	137
41	Tendon-Derived Stem Cells (TDSCs): From Basic Science to Potential Roles in Tendon Pathology and Tissue Engineering Applications. Stem Cell Reviews and Reports, 2011, 7, 883-897.	5.6	135
42	Tenogenic differentiation of stem cells for tendon repair-what is the current evidence?. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e144-e163.	2.7	80
43	Mechanical loading increased BMPâ€2 expression which promoted osteogenic differentiation of tendonâ€derived stem cells. Journal of Orthopaedic Research, 2011, 29, 390-396.	2.3	159
44	Expression of chondroâ€osteogenic BMPs in ossified failed tendon healing model of tendinopathy. Journal of Orthopaedic Research, 2011, 29, 816-821.	2.3	48
45	Continuous cyclic mechanical tension inhibited Runx2 expression in mesenchymal stem cells through RhoAâ€ERK1/2 pathway. Journal of Cellular Physiology, 2011, 226, 2159-2169.	4.1	59
46	Validation of a histologic scoring system for the examination of quality of tendon graft to bone tunnel healing in anterior cruciate ligament reconstruction. , 2011, 33, 36-49.		8
47	Inferior tendon graft to bone tunnel healing at the tibia compared to that at the femur after anterior cruciate ligament reconstruction. Journal of Orthopaedic Science, 2010, 15, 389-401.	1.1	32
48	Biology and augmentation of tendon-bone insertion repair. Journal of Orthopaedic Surgery and Research, 2010, 5, 59.	2.3	132
49	Deciphering the pathogenesis of tendinopathy: a three-stages process. BMC Sports Science, Medicine and Rehabilitation, 2010, 2, 30.	1.7	78
50	Sustained expression of proteoglycans and collagen type III/type I ratio in a calcified tendinopathy model. Rheumatology, 2010, 49, 231-239.	1.9	72
51	Isolation and Characterization of Multipotent Rat Tendon-Derived Stem Cells. Tissue Engineering - Part A, 2010, 16, 1549-1558.	3.1	267
52	Expression of Sensory Neuropeptides in Tendon is Associated with Failed Healing and Activity-Related Tendon Pain in Collagenase-Induced Tendon Injury. American Journal of Sports Medicine, 2010, 38, 757-764.	4.2	54
53	Chondrocyte Phenotype and Ectopic Ossification in Collagenase-induced Tendon Degeneration. Journal of Histochemistry and Cytochemistry, 2009, 57, 91-100.	2.5	75
54	Arthroscopic Gluteal Muscle Contracture Release With Radiofrequency Energy. Clinical Orthopaedics and Related Research, 2009, 467, 799-804.	1.5	39

PAULINE PO YEE LUI

#	Article	IF	CITATIONS
55	Expression of Bone Morphogenetic Protein-2 in the Chondrogenic and Ossifying Sites of Calcific Tendinopathy and Traumatic Tendon Injury Rat Models. Journal of Orthopaedic Surgery and Research, 2009, 4, 27.	2.3	41
56	The use of motion analysis to measure pain-related behaviour in a rat model of degenerative tendon injuries. Journal of Neuroscience Methods, 2009, 179, 309-318.	2.5	33
57	Effect of medial arch-heel support in inserts on reducing ankle eversion: a biomechanics study. Journal of Orthopaedic Surgery and Research, 2008, 3, 7.	2.3	11
58	Orthopaedic sport biomechanics – a new paradigm. Clinical Biomechanics, 2008, 23, S21-S30.	1.2	14
59	Tai Chi Chuan Exercises in Enhancing Bone Mineral Density in Active Seniors. Clinics in Sports Medicine, 2008, 27, 75-86.	1.8	25
60	Increased apoptosis at the late stage of tendon healing. Wound Repair and Regeneration, 2007, 15, 702-707.	3.0	48
61	Areal and Volumetric Bone Densitometry in Evaluation of Tai Chi Chuan Exercise for Prevention of Postmenopausal Osteoporosis. , 2007, , 505-515.		0
62	Anin vitro optimized injectable calcium phosphate cement for augmenting screw fixation in osteopenic goats. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 153-160.	3.4	39
63	The nuclear tubular invaginations are dynamic structures inside the nucleus of HeLa cellsThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell Canadian Journal of Physiology and Pharmacology, 2006, 84, 477-486.	1.4	17
64	Electrochemical deposition of hydroxyapatite with vinyl acetate on titanium implants. Journal of Biomedical Materials Research Part B, 2003, 65A, 24-29.	3.1	27
65	The nucleus of HeLa cells contains tubular structures for Ca2+ signaling with the involvement of mitochondria. Biochemical and Biophysical Research Communications, 2003, 308, 826-833.	2.1	39
66	Bioengineering and Characterization of Physeal Transplant with Physeal Reconstruction Potential. Tissue Engineering, 2003, 9, 703-711.	4.6	14
67	The nuclear envelope of resting C6 glioma cells is able to release and uptake Ca 2+ in the absence of chemical stimulation. Pflugers Archiv European Journal of Physiology, 1998, 435, 357-361.	2.8	12
68	The rise of nuclear and cytosolic Ca 2+ can be uncoupled in HeLa cells. Pflugers Archiv European Journal of Physiology, 1998, 436, 371-376.	2.8	33
69	Ca2+is released from the nuclear tubular structure into nucleoplasm in C6 glioma cells after stimulation with phorbol ester. FEBS Letters, 1998, 432, 82-87.	2.8	24
70	The Nucleus of HeLa Cell Contains Tubular Structures for Ca2+Signalling. Biochemical and Biophysical Research Communications, 1998, 247, 88-93.	2.1	48
71	Practical Considerations in Acquiring Biological Signals from Confocal Microscope. NeuroSignals, 1997, 6, 45-51.	0.9	4