Alberto Pascale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8352186/publications.pdf

Version: 2024-02-01

687220 1125617 13 1,838 13 13 citations h-index g-index papers 13 13 13 2012 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Copper accumulation in agricultural soils: Risks for the food chain and soil microbial populations. Science of the Total Environment, 2020, 734, 139434.	3.9	58
2	Soil tillage and compost amendment promote bioremediation and biofertility of polluted area. Journal of Cleaner Production, 2019, 239, 118087.	4.6	38
3	Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 2019, 10, 1741.	1.7	354
4	Root Exudates of Stressed Plants Stimulate and Attract <i>Trichoderma</i> Soil Fungi. Molecular Plant-Microbe Interactions, 2018, 31, 982-994.	1.4	147
5	Comparative assessment of autochthonous bacterial and fungal communities and microbial biomarkers of polluted agricultural soils of the Terra dei Fuochi. Scientific Reports, 2018, 8, 14281.	1.6	45
6	Modulation of Tomato Response to Rhizoctonia solani by Trichoderma harzianum and Its Secondary Metabolite Harzianic Acid. Frontiers in Microbiology, 2018, 9, 1966.	1.5	126
7	Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 2017, 92, 176-181.	1.0	135
8	Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from <i>Trichoderma</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 3538-3545.	2.4	56
9	Cremenolide, a new antifungal, 10-member lactone from <i>Trichoderma cremeum</i> with plant growth promotion activity. Natural Product Research, 2016, 30, 2575-2581.	1.0	51
10	Multiple Roles and Effects of a Novel <i>Trichoderma</i> Hydrophobin. Molecular Plant-Microbe Interactions, 2015, 28, 167-179.	1.4	100
11	A Novel Fungal Metabolite with Beneficial Properties for Agricultural Applications. Molecules, 2014, 19, 9760-9772.	1.7	89
12	Trichoderma-based Products and their Widespread Use in Agriculture. The Open Mycology Journal, 2014, 8, 71-126.	0.8	451
13	Trichoderma Secondary Metabolites Active on Plants and Fungal Pathogens. The Open Mycology Journal, 2014, 8, 127-139.	0.8	188