Alexandre Blais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8352139/publications.pdf

Version: 2024-02-01

393982 344852 1,991 36 19 36 citations g-index h-index papers 39 39 39 3327 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An initial blueprint for myogenic differentiation. Genes and Development, 2005, 19, 553-569.	2.7	384
2	Constructing transcriptional regulatory networks. Genes and Development, 2005, 19, 1499-1511.	2.7	220
3	UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis. EMBO Journal, 2010, 29, 1401-1411.	3.5	191
4	Hitting their targets: an emerging picture of E2F and cell cycle control. Current Opinion in Genetics and Development, 2004, 14, 527-532.	1.5	133
5	E2F-associated chromatin modifiers and cell cycle control. Current Opinion in Cell Biology, 2007, 19, 658-662.	2.6	130
6	Retinoblastoma tumor suppressor protein–dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. Journal of Cell Biology, 2007, 179, 1399-1412.	2.3	116
7	Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation. Nucleic Acids Research, 2010, 38, 6857-6871.	6.5	96
8	Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome. Developmental Biology, 2010, 338, 168-182.	0.9	85
9	Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling. Nucleic Acids Research, 2014, 42, 11349-11362.	6.5	70
10	The Mammalian Sin3 Proteins Are Required for Muscle Development and Sarcomere Specification. Molecular and Cellular Biology, 2010, 30, 5686-5697.	1,1	59
11	Epigenetic regulation of satellite cell activation during muscle regeneration. Stem Cell Research and Therapy, 2011, 2, 18.	2.4	55
12	Transcriptional control of stem cell fate by E2Fs and pocket proteins. Frontiers in Genetics, 2015, 6, 161.	1,1	55
13	Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium. Nature Communications, 2016, 7, 12748.	5.8	51
14	Retinoic Acid Enhances Skeletal Myogenesis in Human Embryonic Stem Cells by Expanding the Premyogenic Progenitor Population. Stem Cell Reviews and Reports, 2012, 8, 482-493.	5.6	48
15	SOX15 and SOX7 Differentially Regulate the Myogenic Program in P19 Cells. Stem Cells, 2009, 27, 1231-1243.	1.4	41
16	Six1 Regulates MyoD Expression in Adult Muscle Progenitor Cells. PLoS ONE, 2013, 8, e67762.	1.1	35
17	A Single TCF Transcription Factor, Regardless of Its Activation Capacity, Is Sufficient for Effective Trilineage Differentiation of ESCs. Cell Reports, 2017, 20, 2424-2438.	2.9	34
18	Genomeâ€wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis. FASEB Journal, 2015, 29, 4738-4755.	0.2	32

#	Article	IF	Citations
19	Molecular basis for the methylation specificity of ATXR5 for histone H3. Nucleic Acids Research, 2017, 45, 6375-6387.	6.5	22
20	Discovery, optimization and validation of an optimal DNA-binding sequence for the Six1 homeodomain transcription factor. Nucleic Acids Research, 2012, 40, 8227-8239.	6.5	21
21	Insights into interplay between rexinoid signaling and myogenic regulatory factor-associated chromatin state in myogenic differentiation. Nucleic Acids Research, 2017, 45, 11236-11248.	6.5	18
22	Regulation of Hspb7 by MEF2 and AP-1: implications for Hspb7 in muscle atrophy. Journal of Cell Science, 2016, 129, 4076-4090.	1.2	15
23	Gene expression profiling of skeletal myogenesis in human embryonic stem cells reveals a potential cascade of transcription factors regulating stages of myogenesis, including quiescent/activated satellite cell-like gene expression. PLoS ONE, 2019, 14, e0222946.	1.1	14
24	In Vitro Modeling of Congenital Heart Defects Associated with an NKX2-5 Mutation Revealed a Dysregulation in BMP/Notch-Mediated Signaling. Stem Cells, 2018, 36, 514-526.	1.4	12
25	Myogenesis in the Genomics Era. Journal of Molecular Biology, 2015, 427, 2023-2038.	2.0	10
26	Muscle Enriched Lamin Interacting Protein (Mlip) Binds Chromatin and Is Required for Myoblast Differentiation. Cells, 2021, 10, 615.	1.8	8
27	Devising transcriptional regulatory networks operating during the cell cycle and differentiation using ChIP-on-chip. Chromosome Research, 2005, 13, 275-288.	1.0	7
28	Chromatin and transcription factor profiling in rare stem cell populations using CUT&Tag. STAR Protocols, 2021, 2, 100751.	0.5	5
29	Six1 promotes skeletal muscle thyroid hormone response through regulation of the MCT10 transporter. Skeletal Muscle, 2021, 11, 26.	1.9	5
30	SOX7 Is Required for Muscle Satellite Cell Development and Maintenance. Stem Cell Reports, 2017, 9, 1139-1151.	2.3	4
31	Foxo3a tempers excessive glutaminolysis in activated T cells to prevent fatal gut inflammation in the murine IL-10â^'/â^' model of colitis. Cell Death and Differentiation, 2022, 29, 585-599.	5.0	4
32	Keeping Them All Together: \hat{l}^2 -Propeller Domains in Histone Methyltransferase Complexes. Journal of Molecular Biology, 2014, 426, 3363-3375.	2.0	2
33	A new mode of cell cycle stimulation: Cyclin E and CDK2-mediated cytoplasmic retention of repressive E2F complexes. Cell Cycle, 2012, 11, 2978-2978.	1.3	1
34	Rb and chromatin remodeling in the maintenance of the post-mitotic state of neurons. Cell Cycle, 2013, 12, 1661-1661.	1.3	1
35	BRG1 interacts with GLI2 and binds Mef2c gene in a hedgehog signalling dependent manner during in vitro cardiomyogenesis. BMC Developmental Biology, 2016, 16, 27.	2.1	1
36	Combinatorial Utilization of Murine Embryonic Stem Cells andIn VivoModels to Study Human Congenital Heart Disease. Current Protocols in Stem Cell Biology, 2018, 48, e75.	3.0	1

3