Sang Heon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8351616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic. Progress in Oceanography, 2015, 136, 92-114.	3.2	222
2	Primary and new production in the deep Canada Basin during summer 2002. Polar Biology, 2005, 28, 190-197.	1.2	127
3	Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Continental Shelf Research, 2007, 27, 2231-2249.	1.8	106
4	An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyllâ€ <i>a</i> based models. Journal of Geophysical Research: Oceans, 2015, 120, 6508-6541.	2.6	90
5	Decadal trends in phytoplankton production in the Pacific Arctic Region from 1950 to 2012. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 152, 82-94.	1.4	76
6	Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes. Antonie Van Leeuwenhoek, 2013, 103, 1309-1319.	1.7	68
7	Holes in Progressively Thinning Arctic Sea Ice Lead to New Ice Algae Habitat. Oceanography, 2011, 24, 302-308.	1.0	66
8	Investigation of Arctic sea ice and ocean primary production for the period 1992–2007 using a 3-D global ice–ocean ecosystem model. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 81-84, 28-35.	1.4	65
9	Spatial distribution of phytoplankton productivity in the Amundsen Sea, Antarctica. Polar Biology, 2012, 35, 1721-1733.	1.2	63
10	Long-term annual primary production in the Ulleung Basin as a biological hot spot in the East/Japan Sea. Journal of Geophysical Research: Oceans, 2014, 119, 3002-3011.	2.6	50
11	Phytoplankton productivity in newly opened waters of the Western Arctic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 81-84, 18-27.	1.4	49
12	Phytoplankton productivity and its response to higher light levels in the Canada Basin. Polar Biology, 2012, 35, 257-268.	1.2	46
13	High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea. Continental Shelf Research, 2009, 29, 1689-1696.	1.8	45
14	Phytoplankton production from melting ponds on Arctic sea ice. Journal of Geophysical Research, 2012, 117, .	3.3	44
15	Low primary production in the Chukchi Sea shelf, 2009. Continental Shelf Research, 2014, 76, 1-11.	1.8	44
16	Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-Aqua. Remote Sensing, 2016, 8, 25.	4.0	44
17	Contribution of small phytoplankton to total primary production in the Chukchi Sea. Continental Shelf Research, 2013, 68, 43-50.	1.8	43
18	The influence of climate regime shifts on the marine environment and ecosystems in the East Asian Marginal Seas and their mechanisms. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 143, 110-120.	1.4	42

#	Article	IF	CITATIONS
19	Spring time production of bottom ice algae in the landfast sea ice zone at Barrow, Alaska. Journal of Experimental Marine Biology and Ecology, 2008, 367, 204-212.	1.5	39
20	Uptake rates of dissolved inorganic carbon and nitrogen by under-ice phytoplankton in the Canada Basin in summer 2005. Polar Biology, 2010, 33, 1027-1036.	1.2	38
21	Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community. PeerJ, 2016, 4, e2115.	2.0	37
22	Summer primary productivity and phytoplankton community composition driven by different hydrographic structures in the East/Japan Sea and the Western Subarctic Pacific. Journal of Geophysical Research: Oceans, 2014, 119, 4505-4519.	2.6	36
23	Enhanced biological activity by an anticyclonic warm eddy during early spring in the East Sea (Japan) Tj ETQq1	l 0.784314 1.3	rgǥŢ /Overlo
24	Biodiversity and Biogeography of the Lower Trophic Taxa of the Pacific Arctic Region: Sensitivities to Climate Change. , 2014, , 269-336.		32
25	Large seasonal variation in phytoplankton production in the Amundsen Sea. Polar Biology, 2015, 38, 319-331.	1.2	32
26	Evidence of minimal carbon sequestration in the productive Amundsen Sea polynya. Geophysical Research Letters, 2017, 44, 7892-7899.	4.0	32
27	Latitudinal carbon productivity in the Bering and Chukchi Seas during the summer in 2007. Continental Shelf Research, 2013, 59, 28-36.	1.8	31
28	Seasonal variation in the biochemical compositions of phytoplankton and zooplankton communities in the southwestern East/Japan Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 143, 82-90.	1.4	31
29	Seasonal carbon uptake rates of phytoplankton in the northern East/Japan Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 143, 45-53.	1.4	30
30	Mesozooplankton distribution patterns and grazing impacts of copepods and Euphausia crystallorophias in the Amundsen Sea, West Antarctica, during austral summer. Polar Biology, 2013, 36, 1215-1230.	1.2	29
31	Comparison of phytoplankton macromolecular compositions and zooplankton proximate compositions in the northern Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 120, 82-90.	1.4	29
32	Spatio-Temporal Variability of the Habitat Suitability Index for Chub Mackerel (Scomber Japonicus) in the East/Japan Sea and the South Sea of South Korea. Remote Sensing, 2018, 10, 938.	4.0	28
33	The effects of different environmental factors on the biochemical composition of particulate organic matter in Gwangyang Bay, South Korea. Biogeosciences, 2017, 14, 1903-1917.	3.3	26
34	Decadal changes of phytoplankton chlorophyll-a in the East Sea/Sea of Japan. Oceanology, 2014, 54, 771-779.	1.2	25
35	Comparison of biochemical compositions of phytoplankton during spring and fall seasons in the northern East/Japan Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 143, 73-81.	1.4	25
36	A Review on the Macromolecular Compositions of Phytoplankton and the Implications for Aquatic Biogeochemistry. Ocean Science Journal, 2019, 54, 1-14.	1.3	25

#	Article	IF	CITATIONS
37	Sinking particle flux in the sea ice zone of the Amundsen Shelf, Antarctica. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 101, 110-117.	1.4	24
38	Reconstruction of Ocean Color Data Using Machine Learning Techniques in Polar Regions: Focusing on Off Cape Hallett, Ross Sea. Remote Sensing, 2019, 11, 1366.	4.0	24
39	Recent phytoplankton productivity of the northern Bering Sea during early summer in 2007. Polar Biology, 2012, 35, 83-98.	1.2	23
40	Regional productivity of phytoplankton in the Western Arctic Ocean during summer in 2010. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 120, 61-71.	1.4	22
41	Large contribution of small phytoplankton at Marian Cove, King George Island, Antarctica, based on long-term monitoring from 1996 to 2008. Polar Biology, 2015, 38, 207-220.	1.2	22
42	Macromolecular compositions of phytoplankton in the Amundsen Sea, Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 123, 42-49.	1.4	22
43	Small phytoplankton contribution to the total primary production in the highly productive Ulleung Basin in the East/Japan Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 143, 54-61.	1.4	21
44	High lipid composition of particulate organic matter in the northern Chukchi Sea, 2011. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 120, 72-81.	1.4	20
45	First in situ estimations of small phytoplankton carbon and nitrogen uptake rates in the Kara, Laptev, and East Siberian seas. Biogeosciences, 2018, 15, 5503-5517.	3.3	20
46	Seasonal Variation in Food Web Structure and Fish Community Composition in the East/Japan Sea. Estuaries and Coasts, 2020, 43, 615-629.	2.2	20
47	Recent Primary Production and Small Phytoplankton Contribution in the Yellow Sea during the Summer in 2016. Ocean Science Journal, 2018, 53, 509-519.	1.3	18
48	Environmental Forcings on the Remotely Sensed Phytoplankton Bloom Phenology in the Central Ross Sea Polynya. Journal of Geophysical Research: Oceans, 2019, 124, 5400-5417.	2.6	18
49	Phylogenetic diversity of planktonic bacteria in the Chukchi Borderland region in summer. Acta Oceanologica Sinica, 2013, 32, 66-74.	1.0	17
50	Characteristics of Different Size Phytoplankton for Primary Production and Biochemical Compositions in the Western East/Japan Sea. Frontiers in Microbiology, 2020, 11, 560102.	3.5	16
51	Small phytoplankton contribution to the standing stocks and the total primary production in the Amundsen Sea. Biogeosciences, 2017, 14, 3705-3713.	3.3	15
52	Carbon Biogeochemistry of the Western Arctic: Primary Production, Carbon Export and the Controls on Ocean Acidification. , 2014, , 223-268.		15
53	Vertical Distributions of Macromolecular Composition of Particulate Organic Matter in the Water Column of the Amundsen Sea Polynya During the Summer in 2014. Journal of Geophysical Research: Oceans, 2018, 123, 1393-1405.	2.6	14
54	Seasonal Variations in the Small Phytoplankton Contribution to the Total Primary Production in the Amundsen Sea, Antarctica. Journal of Geophysical Research: Oceans, 2019, 124, 8324-8341.	2.6	14

#	Article	IF	CITATIONS
55	First Concurrent Measurement of Primary Production in the Yellow Sea, the South Sea of Korea, and the East/Japan Sea, 2018. Journal of Marine Science and Engineering, 2021, 9, 1237.	2.6	14

Spatio-Temporal Variability of the Habitat Suitability Index for the Todarodes Pacificus (Japanese) Tj ETQq000 rgBT₄. Overlock 10 Tf 507

57	Spatiotemporal Variation in Phytoplankton Community Driven by Environmental Factors in the Northern East China Sea. Water (Switzerland), 2020, 12, 2695.	2.7	13
58	The biochemical composition of phytoplankton in the Laptev and East Siberian seas during the summer of 2013. Polar Biology, 2019, 42, 133-148.	1.2	12
59	Weak Response of Biological Productivity and Community Structure of Phytoplankton to Mesoscale Eddies in the Oligotrophic Philippine Sea. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016436.	2.6	12
60	Spatial distribution of small phytoplankton composition in the Chukchi Sea. Polar Biology, 2014, 37, 99-109.	1.2	11
61	Sedimentation of particulate organic carbon on the Amundsen Shelf, Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 123, 135-144.	1.4	11
62	Spatial distribution of common Minke whale (Balaenoptera acutorostrata) as an indication of a biological hotspot in the East Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 143, 91-99.	1.4	11
63	A consistent structure of phytoplankton communities across the warm–cold regions of the water mass on a meridional transect in the East/Japan Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 143, 36-44.	1.4	11
64	Carbon contribution of sea ice floes in the Arctic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 120, 35-42.	1.4	10
65	High protein production of phytoplankton in the Amundsen Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 123, 50-57.	1.4	10
66	River discharge effects on the contribution of small-sized phytoplankton to the total biochemical composition of POM in the Gwangyang Bay, Korea. Estuarine, Coastal and Shelf Science, 2019, 226, 106293.	2.1	10
67	Different Biochemical Compositions of Particulate Organic Matter Driven by Major Phytoplankton Communities in the Northwestern Ross Sea. Frontiers in Microbiology, 2021, 12, 623600.	3.5	10
68	Variability of Phytoplankton Size Structure in Response to Changes in Coastal Upwelling Intensity in the Southwestern East Sea. Journal of Geophysical Research: Oceans, 2017, 122, 10262-10274.	2.6	9
69	Estimation of the Particulate Organic Carbon to Chlorophyll-a Ratio Using MODIS-Aqua in the East/Japan Sea, South Korea. Remote Sensing, 2020, 12, 840.	4.0	9
70	Climate Change and Anthropogenic Impact Around the Korean Coastal Ecosystems: Korean Long-term Marine Ecological Research (K-LTMER). Estuaries and Coasts, 2020, 43, 441-448.	2.2	9
71	Vertical Distribution of Phytoplankton Community and Pigment Production in the Yellow Sea and the East China Sea during the Late Summer Season. Water (Switzerland), 2021, 13, 3321.	2.7	9
72	Spatial distribution of cold-adapted Synechococcus during spring in seas adjacent to Korea. Algae, 2016, 31, 231-241.	2.3	8

#	Article	IF	CITATIONS
73	Macromolecular production of phytoplankton in the northern Bering Sea, 2007. Polar Biology, 2014, 37, 391-401.	1.2	7
74	In-situ measured primary productivity of ice algae in Arctic sea ice floes using a new incubation method. Ocean Science Journal, 2016, 51, 387-396.	1.3	7
75	Heterotrophic bacterial production, respiration, and growth efficiency associated with upwelling intensity in the Ulleung Basin, East Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 143, 24-35.	1.4	7
76	Monthly Variations of Phytoplankton Community in Geoje-Hansan Bay of the Southern Part of Korea Based on HPLC Pigment Analysis. Journal of Coastal Research, 2018, 85, 356-360.	0.3	7
77	Transparent Exopolymer Particle (TEPs) Dynamics and Contribution to Particulate Organic Carbon (POC) in Jaran Bay, Korea. Water (Switzerland), 2020, 12, 1057.	2.7	7
78	Exploring the Roles of Iron and Irradiance in Dynamics of Diatoms and <i>Phaeocystis</i> in the Amundsen Sea Continental Shelf Water. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016673.	2.6	7
79	Comparison of Particulate Organic Carbon to Chlorophyll-a Ratio Based on the Ocean Color Satellite Data at the leodo and Socheongcho Ocean Research Stations. Journal of Coastal Research, 2019, 90, 267.	0.3	7
80	The challenging role of life cycle monitoring: evidence from bisphenol A on the copepod Tigriopus japonicus. Hydrobiologia, 2017, 784, 81-91.	2.0	6
81	Lipid-rich and protein-poor carbon allocation patterns of phytoplankton in the northern Chukchi Sea, 2011. Continental Shelf Research, 2018, 158, 26-32.	1.8	6
82	Annual New Production of Phytoplankton Estimated from MODIS-Derived Nitrate Concentration in the East/Japan Sea. Remote Sensing, 2018, 10, 806.	4.0	6
83	Picocyanobacterial Contribution to the Total Primary Production in the Northwestern Pacific Ocean. Water (Switzerland), 2021, 13, 1610.	2.7	6
84	Phytoplankton and Primary Production. , 2016, , 217-245.		6
85	Potential overestimation in primary and new productions of phytoplankton from a short time incubation method. Ocean Science Journal, 2015, 50, 509-517.	1.3	5
86	Monthly variation in the proximate composition of jack mackerel (Trachurus japonicus) from Geumo Island, Korea. Fisheries Research, 2016, 183, 371-378.	1.7	5
87	Inter-Annual Variation of the Annual New Production of Phytoplankton in the Southwestern East/Japan Sea Estimated from Satellite-Derived Surface Nitrate Concentration. Journal of Coastal Research, 2018, 85, 336-340.	0.3	5
88	Spatial variations of small phytoplankton contributions in the Northern Bering Sea and the Southern Chukchi Sea. GIScience and Remote Sensing, 2019, 56, 794-810.	5.9	5
89	Temporal and Spatial Variations of the Biochemical Composition of Phytoplankton and Potential Food Material (FM) in Jaran Bay, South Korea. Water (Switzerland), 2020, 12, 3093.	2.7	5
90	Carbon and nitrogen uptake rates and macromolecular compositions of bottom-ice algae and phytoplankton at Cambridge Bay in Dease Strait, Canada. Annals of Glaciology, 2020, 61, 106-116.	1.4	5

#	Article	IF	CITATIONS
91	The Contribution of Small Phytoplankton Communities to the Total Dissolved Inorganic Nitrogen Assimilation Rates in the East/Japan Sea: An Experimental Evaluation. Journal of Marine Science and Engineering, 2020, 8, 854.	2.6	5
92	Major controlling factors for spatio-temporal variations in the macromolecular composition and primary production by phytoplankton in Garolim and Asan bays in the Yellow Sea. Regional Studies in Marine Science, 2020, 36, 101269.	0.7	5
93	Improved Chlorophyll-a Algorithm for the Satellite Ocean Color Data in the Northern Bering Sea and Southern Chukchi Sea. Ocean Science Journal, 2018, 53, 475-485.	1.3	4
94	Coastal Hypoxia in the Jinhae Bay, South Korea: Mechanism, Spatiotemporal Variation, and Implications (based on 2011 survey). Journal of Coastal Research, 2018, 85, 1481-1485.	0.3	4
95	Monthly Variations in the Intracellular Nutrient Pools of Phytoplankton in Jaran Bay, Korea. Journal of Coastal Research, 2018, 85, 331-335.	0.3	4
96	Potential Implications of Changing Photosynthetic End-Products of Phytoplankton Caused by Sea Ice Conditions in the Northern Chukchi Sea. Frontiers in Microbiology, 2019, 10, 2274.	3.5	4
97	Fluvial influence on the biochemical composition of particulate organic matter in the Laptev and Western East Siberian seas during 2015. Marine Environmental Research, 2020, 155, 104873.	2.5	4
98	Progress and Challenges in Biogeochemical Modeling of the Pacific Arctic Region. , 2014, , 393-445.		4
99	Variation of Primary Productivity and Phytoplankton Community in the Weirs of Mid and Downstream of the Nakdong River during Fall and Early Winter: Application of Phytoplankton Pigments and CHEMTAX Korean Journal of Ecology and Environment, 2019, 52, 81-93.	0.3	4
100	Interannual Variation in Phytoplankton Community Driven by Environmental Factors in the Northern East China Sea. Frontiers in Marine Science, 2022, 9, .	2.5	4
101	Demersally drifting invertebrates from Kongsfjorden, Svalbård (Arctic Ocean)–a comparison of catches from drift-pump and drift-nets. Ocean Science Journal, 2015, 50, 639-648.	1.3	3
102	Carbohydrate-dominant Phytoplankton and Protein-high Zooplankton in the Northern Part of the Southwestern East/Japan Sea in 2015. Journal of Coastal Research, 2018, 85, 371-375.	0.3	3
103	A Review on Marine N2 Fixation: Mechanism, Evolution of Methodologies, Rates, and Future Concerns. Ocean Science Journal, 2019, 54, 515-528.	1.3	3
104	Monthly Variation in the Macromolecular Composition of Phytoplankton Communities at Jang Bogo Station, Terra Nova Bay, Ross Sea. Frontiers in Microbiology, 2021, 12, 618999.	3.5	3
105	Seasonal Variations in the Biochemical Compositions of Phytoplankton and Transparent Exopolymer Particles (TEPs) at Jang Bogo Station (Terra Nova Bay, Ross Sea), 2017–2018. Water (Switzerland), 2021, 13, 2173.	2.7	3
106	Contribution of Small Phytoplankton to Primary Production in the Northern Bering and Chukchi Seas. Water (Switzerland), 2022, 14, 235.	2.7	3
107	Entrainment induced by near-inertial drift of sea ice and its impact on under-ice biogeochemical processes in marginal ice zones. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 120, 21-34.	1.4	2
108	In-situ Measured Carbon and Nitrogen Uptake Rates of Melt Pond Algae in the Western Arctic Ocean, 2014. Ocean Science Journal, 2018, 53, 107-117.	1.3	2

#	Article	IF	CITATIONS
109	Key Factors Controlling Primary Production and Cyanobacterial Harmful Algal Blooms (cHABs) in a Continuous Weir System in the Nakdong River, Korea. Sustainability, 2020, 12, 6224.	3.2	2
110	Satellite-Derived Protein Concentration of Phytoplankton in the Southwestern East/Japan Sea. Journal of Marine Science and Engineering, 2021, 9, 189.	2.6	2
111	Major controlling factors affecting spatiotemporal variation in the dissolved oxygen concentration in the eutrophic Masan Bay of Korea. Regional Studies in Marine Science, 2021, 46, 101908.	0.7	2
112	Spatial Patterns of Macromolecular Composition of Phytoplankton in the Arctic Ocean. Water (Switzerland), 2021, 13, 2495.	2.7	2
113	The complete mitochondrial genome of Japanese sea lion, <i>Zalophus japonicus</i> (Carnivora:) Tj ETQq1 1 0.78 DNA Part B: Resources, 2021, 6, 3184-3185.	4314 rgBT 0.4	/Overlock 2
114	A Study of Variation Characteristics of the Phytoplankton Community by UPLC Located in the Jinju Bay, Korea. Hangug Hwangyeong Saengmul Haghoeji, 2018, 36, 62-72.	0.4	2
115	Feeding Strategy of the Wild Korean Seahorse (Hippocampus haema). Journal of Marine Science and Engineering, 2022, 10, 357.	2.6	2
116	Ecological Characteristics of the New Recorded Seahorse (Hippocampus haema) in Geoje-Hansan Bay, Korea. Journal of Coastal Research, 2018, 85, 351-355.	0.3	1
117	Feeding Patterns of â€~Finless Porpoise (Neophocaena asiaeorientalis)' in the Yellow Sea as Indicated by Stable Carbon and Nitrogen Isotope Ratios. Journal of Coastal Research, 2018, 85, 386-390.	0.3	1
118	Editorial: Microbial Response to a Rapidly Changing Marine Environment: Global Warming and Ocean Acidification. Frontiers in Microbiology, 2021, 12, 731732.	3.5	1
119	Estimation of POC Export Fluxes Using234Th/238U Disequilibria in the Amundsen Sea, Antarctica; Preliminary Result. Pada (Han'guk Haeyang Hakhoe), 2014, 19, 109-124.	0.3	1
120	The First Population Simulation for the Zalophus japonicus (Otariidae: Sea Lions) on Dokdo, Korea. Journal of Marine Science and Engineering, 2022, 10, 271.	2.6	1
121	Korean Arctic Ocean expeditions (K-PORT) in the Northern Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 120, 1-2.	1.4	0
122	A research note: Potential importance of N <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e825" altimg="si64.svg"><mmi:msub><mmi:mrow /><mmi:mrow><mmi:mn>2</mmi:mn></mmi:mrow></mmi:mrow </mmi:msub>fixers in the coastal northwestern Fast/Japan Sea Regional Studies in Marine Science, 2019, 31, 100785</mmi:math 	0.7	0
123	Marine Nitrogen Fixation and Phytoplankton Ecology. Water (Switzerland), 2022, 14, 1638.	2.7	0