List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8351269/publications.pdf Version: 2024-02-01

WEN YANG

#	Article	IF	CITATIONS
1	Orderly defective superstructure for enhanced pseudocapacitive storage in titanium niobium oxide. Nano Research, 2022, 15, 1570-1578.	5.8	24
2	Carbon electrodes with ionophobic characteristics in organic electrolyte for high-performance electric double-layer capacitors. Science China Materials, 2022, 65, 383-390.	3.5	18
3	Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application. Nano Research, 2022, 15, 2138-2146.	5.8	25
4	Tailored Carrier Transport Path by Interpenetrating Networks in Cathode Composite for High Performance All-Solid-State Li-SeS2 Batteries. Advanced Fiber Materials, 2022, 4, 487-502.	7.9	17
5	Design Unique Air‧table and Li–Metal Compatible Sulfide Electrolyte via Exploration of Anion Functional Units for All‧olid‧tate Lithium–Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	33
6	Graphite foam as carbon-based footprint for in-situ fabrication of Ti3+-doped titanium niobium oxide (Ti2Nb10O29) nanocrystal for high-rate performance lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 623, 1015-1026.	5.0	7
7	An Unprecedented Fireproof, Anionâ€Immobilized Composite Electrolyte Obtained via Solidifying Carbonate Electrolyte for Safe and Highâ€Power Solidâ€State Lithiumâ€Ion Batteries. Small, 2022, 18, .	5.2	9
8	Efficient polysulfide conversion by Fe-N/C active sites anchored in N, P- doped carbon for high-performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 922, 166132.	2.8	11
9	A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2021, 407, 127149.	6.6	54
10	Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 585, 328-336.	5.0	29
11	Disulfide-Containing Molecular Sticker Assists Cellular Delivery of DNA Nanoassemblies by Bypassing Endocytosis. CCS Chemistry, 2021, 3, 1178-1186.	4.6	17
12	Strong Interfacial Adhesion between the Li ₂ S Cathode and a Functional Li ₇ P _{2.9} Ce _{0.2} S _{10.9} Cl _{0.3} Solid-State Electrolyte Endowed Long-Term Cycle Stability to All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28270-28280.	4.0	27
13	Space Charge Layer Effect in Sulfide Solid Electrolytes in All-Solid-State Batteries: In-situ Characterization and Resolution. Transactions of Tianjin University, 2021, 27, 423-433.	3.3	13
14	Insight on air-induced degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries. Chemical Engineering Journal, 2021, 425, 130535.	6.6	39
15	A panoramic view of Li7P3S11 solid electrolytes synthesis, structural aspects and practical challenges for all-solid-state lithium batteries. Chinese Journal of Chemical Engineering, 2021, 39, 16-36.	1.7	18
16	Cathode-doped sulfide electrolyte strategy for boosting all-solid-state lithium batteries. Chemical Engineering Journal, 2020, 391, 123529.	6.6	31
17	Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors. Chinese Chemical Letters, 2020, 31, 1474-1489.	4.8	68
18	Revealing of Active Sites and Catalytic Mechanism in N-Coordinated Fe, Ni Dual-Doped Carbon with Superior Acidic Oxygen Reduction than Single-Atom Catalyst. Journal of Physical Chemistry Letters, 2020, 11, 1404-1410.	2.1	131

#	Article	IF	CITATIONS
19	Enhanced Air Stability and High Li-Ion Conductivity of Li _{6.988} P _{2.994} Nb _{0.2} S _{10.934} O _{0.6} Glass–Ceramic Electrolyte for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 21548-21558.	4.0	74
20	From upcycled waste polyethylene plastic to graphene/mesoporous carbon for high-voltage supercapacitors. Journal of Colloid and Interface Science, 2019, 557, 55-64.	5.0	43
21	Incorporation of CeF3 on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell. Journal of Catalysis, 2019, 374, 43-50.	3.1	31
22	Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors. Chemical Engineering Journal, 2019, 366, 313-320.	6.6	86
23	Layer by Layer Assemble of Colloid Nanomaterial and Functional Multilayer Films for Energy Storage and Conversion. , 2019, , 255-278.		4
24	Porous carbon supported atomic iron as electrocatalysts for acidic oxygen reduction reaction. Science Bulletin, 2018, 63, 213-215.	4.3	12
25	Porous carbon electrocatalyst with exclusive metal-coordinate active sites for acidic oxygen reduction reaction. Carbon, 2018, 132, 85-94.	5.4	19
26	Synergistic Doping for Pseudocapacitance Sites in Alkaline Carbon Supercapacitors. ChemElectroChem, 2018, 5, 84-92.	1.7	13
27	Synthesis of Biomassâ€Đerived Carbon Induced by Cellular Respiration in Yeast for Supercapacitor Applications. Chemistry - A European Journal, 2018, 24, 18068-18074.	1.7	35
28	Metal-phosphide-doped Li7P3S11 glass-ceramic electrolyte with high ionic conductivity for all-solid-state lithium-sulfur batteries. Electrochemistry Communications, 2018, 97, 100-104.	2.3	30
29	Atomic Iron Catalysis of Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19311-19317.	4.0	152
30	Hierarchical design of nitrogen-doped porous carbon nanorods for use in high efficiency capacitive energy storage. RSC Advances, 2017, 7, 22447-22453.	1.7	19
31	Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosensors and Bioelectronics, 2017, 96, 300-307.	5.3	144
32	Ionically dispersed Fe(<scp>ii</scp>)–N and Zn(<scp>ii</scp>)–N in porous carbon for acidic oxygen reduction reactions. Chemical Communications, 2017, 53, 11453-11456.	2.2	22
33	Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium–Sulfur Batteries. Nano Letters, 2016, 16, 5488-5494.	4.5	104
34	UV-assisted synthesis of long-wavelength Si-pyronine fluorescent dyes for real-time and dynamic imaging of glutathione fluctuation in living cells. Journal of Materials Chemistry B, 2016, 4, 4826-4831.	2.9	28
35	Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages. Biosensors and Bioelectronics, 2016, 79, 822-828.	5.3	102
36	Reversible and Dynamic Fluorescence Imaging of Cellular Redox Self-Regulation Using Fast-Responsive Near-Infrared Ge-Pyronines. ACS Applied Materials & Interfaces, 2016, 8, 8991-8997.	4.0	41

#	Article	IF	CITATIONS
37	Highly specific and ratiometric fluorescent probe for ozone assay in indoor air and living cells. Dyes and Pigments, 2016, 127, 67-72.	2.0	14
38	3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. Scientific Reports, 2015, 5, 13340.	1.6	104
39	Stable DNA Nanomachine Based on Duplex–Triplex Transition for Ratiometric Imaging Instantaneous pH Changes in Living Cells. Analytical Chemistry, 2015, 87, 5854-5859.	3.2	51
40	Mn-doped CdS/ZnS/CdS QD-based fluorescent nanosensor for rapid, selective, and ultrasensitive detection of copper(<scp>ii</scp>) ion. RSC Advances, 2015, 5, 63458-63464.	1.7	13
41	Triphenylphosphine-assisted highly sensitive fluorescent chemosensor for ratiometric detection of palladium in solution and living cells. RSC Advances, 2015, 5, 97121-97126.	1.7	21
42	Graphene in Supercapacitor Applications. Current Opinion in Colloid and Interface Science, 2015, 20, 416-428.	3.4	154
43	Surfactant-sensitized ratiometric fluorescent chemodosimeter for the highly selective detection of mercury(ii) ions based on vinyl ether oxymercuration. RSC Advances, 2014, 4, 12596.	1.7	17
44	Explicit Differentiation of G-Quadruplex/Ligand Interactions: Triplet Excited States as Sensitive Reporters. Journal of Physical Chemistry Letters, 2014, 5, 2259-2266.	2.1	13
45	Noncovalent hybrid of CoMn2O4 spinel nanocrystals and poly (diallyldimethylammonium chloride) functionalized carbon nanotubes as efficient electrocatalysts for oxygen reduction reaction. Carbon, 2013, 65, 277-286.	5.4	80
46	Oleylamine as solvent and stabilizer to synthesize shape-controlled ZnS nanocrystals with good optical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 126-129.	2.3	17
47	One-pot self-assembly of flower-like Cu2S structures with near-infrared photoluminescent properties. CrystEngComm, 2011, 13, 6549.	1.3	22
48	Efficient Metal-Free Oxygen Reduction in Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-Doped Carbons Made from Ionic Liquids and Nucleobases. Journal of the American Chemical Society, 2011, 133, 206-209.	6.6	826
49	Highly Enantioselective Henry Reaction Catalyzed by <i>C</i> ₂ â€Symmetric Modular BINOLâ€Oxazoline Schiff Base Copper(II) Complexes Generated in Situ. European Journal of Organic Chemistry, 2011, 2011, 1552-1556.	1.2	29
50	Photochemical Hydrogen Abstraction and Electron Transfer Reactions of Tetrachlorobenzoquinone with Pyrimidine Nucleobases. Chinese Journal of Chemical Physics, 2011, 24, 580-585.	0.6	6
51	Polymer wrapping technique: an effective route to prepare Pt nanoflower/carbon nanotube hybrids and application in oxygenreduction. Energy and Environmental Science, 2010, 3, 144-149.	15.6	45
52	Efficient in situ three-component formation of chiral oxazoline-Schiff base copper(ii) complexes: towards combinatorial library of chiral catalysts for asymmetric Henry reaction. Organic and Biomolecular Chemistry, 2010, 8, 2956.	1.5	45
53	Rapid and Tunable Patterning of High Purity ZnO Nanoarrays without Template or Catalyst. Chemistry - A European Journal, 2009, 15, 4253-4257.	1.7	5
54	Green synthesis of nanowire-like Pt nanostructures and their catalytic properties. Talanta, 2009, 78, 557-564.	2.9	36

#	Article	IF	CITATIONS
55	In situ PEI and formic acid directed formation of Pt NPs/MWNTs hybrid material with excellent electrocatalytic activity. Talanta, 2009, 79, 935-939.	2.9	13
56	Carbon Nanotubes Decorated with Pt Nanocubes by a Noncovalent Functionalization Method and Their Role in Oxygen Reduction. Advanced Materials, 2008, 20, 2579-2587.	11.1	127
57	A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chemical Communications, 2007, , 4419.	2.2	133
58	Molecular Dynamics Simulation of the Formation of Polymer Networks. Macromolecular Theory and Simulations, 2007, 16, 548-556.	0.6	16
59	"Green synthesis―of monodisperse Pt nanoparticles and their catalytic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 628-633.	2.3	47
60	Ewald Summation for Uniformly Charged Surface. Journal of Chemical Theory and Computation, 2006, 2, 1618-1623.	2.3	5
61	Superhydrophobic surface directly created by electrospinning based on hydrophilic material. Journal of Materials Science, 2006, 41, 3793-3797.	1.7	163
62	Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering and Science, 2005, 45, 704-709.	1.5	301
63	Microwaveâ€promoted Oneâ€Pot Three omponent Reaction to [60]Fulleropyrrolidine Derivatives. Synthetic Communications, 2005, 35, 89-96.	1.1	16
64	Efficient and convenient preparation of waterâ€soluble fullerenol. Chinese Journal of Chemistry, 2004, 22, 1008-1011.	2.6	31