List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8351057/publications.pdf Version: 2024-02-01

		30070	46799
245	11,110	54	89
papers	citations	h-index	g-index
251	251	251	8361
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Switching the Inside and the Outside of Aggregates of Water-Soluble Block Copolymers with Double Thermoresponsivity. Journal of the American Chemical Society, 2002, 124, 3787-3793.	13.7	551
2	Controlled Cell Adhesion on PEGâ€Based Switchable Surfaces. Angewandte Chemie - International Edition, 2008, 47, 5666-5668.	13.8	347
3	Structures and Synthesis of Zwitterionic Polymers. Polymers, 2014, 6, 1544-1601.	4.5	338
4	Polymeric Betaines: Synthesis, Characterization, and Application. Advances in Polymer Science, 2006, , 157-224.	0.8	295
5	Multicompartment Micelles Formed by Self-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium. Angewandte Chemie - International Edition, 2005, 44, 5262-5265.	13.8	285
6	Synthetic polymers with quaternary nitrogen atoms—Synthesis and structure of the most used type of cationic polyelectrolytes. Progress in Polymer Science, 2010, 35, 511-577.	24.7	239
7	Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT). Polymer, 2005, 46, 7726-7740.	3.8	221
8	Dissolution and Aggregation of a Poly(NIPA-block-sulfobetaine) Copolymer in Water and Saline Aqueous Solutions. Langmuir, 2002, 18, 5360-5365.	3.5	180
9	Design, Synthesis, and Aqueous Aggregation Behavior of Nonionic Single and Multiple Thermoresponsive Polymers. Langmuir, 2007, 23, 84-93.	3.5	179
10	Examining the UV-vis absorption of RAFT chain transfer agents and their use for polymer analysis. Polymer Chemistry, 2011, 2, 2074.	3.9	165
11	Free Radical Polymerization ofn-Butyl Methacrylate in Ionic Liquids. Macromolecules, 2006, 39, 923-930.	4.8	160
12	Multicompartment Micelles: Has the Long-Standing Dream Become a Reality?. Macromolecular Chemistry and Physics, 2005, 206, 813-817.	2.2	149
13	Second-harmonic generation in Langmuir–Blodgett monolayers of stilbazium salt and phenylhydrazone dyes. Journal of the Optical Society of America B: Optical Physics, 1988, 5, 300.	2.1	148
14	Polymerized micelles with compartments. Current Opinion in Colloid and Interface Science, 2003, 8, 274-281.	7.4	146
15	Synthesis and Properties of Water-Soluble Gold Colloids Covalently Derivatized with Neutral Polymer Monolayers. Journal of the American Chemical Society, 2002, 124, 5811-5821.	13.7	132
16	Synthesis of Ternary, Hydrophilicâ^'Lipophilicâ^'Fluorophilic Block Copolymers by Consecutive RAFT Polymerizations and Their Self-Assembly into Multicompartment Micelles. Macromolecules, 2010, 43, 271-281.	4.8	111
17	Recent developments in the field of micellar polymers. Die Makromolekulare Chemie, 1993, 194, 1-27.	1.1	110
18	Synthesis and Properties of Cationic Oligomeric Surfactants. Langmuir, 2005, 21, 7170-7179.	3.5	109

#	Article	IF	CITATIONS
19	New Water Soluble Agents for Reversible Additionâ~'Fragmentation Chain Transfer Polymerization and Their Application in Aqueous Solutions. Macromolecules, 2005, 38, 3601-3614.	4.8	103
20	Complex domain architecture of multicompartment micelles from a linear ABC triblock copolymer revealed by cryogenic electron tomography. Chemical Communications, 2009, , 2290.	4.1	101
21	Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference. Langmuir, 2019, 35, 1056-1071.	3.5	98
22	Polyelectrolyte Multilayer Assemblies Containing Nonlinear Optical Dyes. Macromolecules, 1997, 30, 8304-8309.	4.8	96
23	Preformed polymers for Langmuir-Blodgett films- molecular concepts. Advanced Materials, 1991, 3, 25-31.	21.0	95
24	Thermoresponsive PS- <i>b</i> -PNIPAM- <i>b</i> -PS Micelles: Aggregation Behavior, Segmental Dynamics, and Thermal Response. Macromolecules, 2010, 43, 2490-2501.	4.8	95
25	New chain transfer agents for reversible addition-fragmentation chain transfer (RAFT) polymerisation in aqueous solution. Polymer, 2004, 45, 3615-3626.	3.8	92
26	Synthesis and Micellar Self-Assembly of Ternary Hydrophilicâ^'Lipophilicâ^'Fluorophilic Block Copolymers with a Linear PEO Chain. Langmuir, 2009, 25, 7594-7601.	3.5	87
27	Synthesis of New Amphiphilic Diblock Copolymers and Their Self-Assembly in Aqueous Solution. Macromolecules, 2005, 38, 7580-7592.	4.8	86
28	Responsive Inverse Opal Hydrogels for the Sensing of Macromolecules. Angewandte Chemie - International Edition, 2015, 54, 6641-6644.	13.8	84
29	Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine) Tj ETQq1 1 0.784314	4 rgBT /Ov	erlock 10 Tf.
30	New Amphiphilic Diblock Copolymers:Â Surfactant Properties and Solubilization in Their Micelles. Langmuir, 2006, 22, 4044-4053.	3.5	82
31	Polymerizable and polymeric zwitterionic surfactants: 1. Synthesis and bulk properties. Polymer, 1991, 32, 2070-2080.	3.8	80
32	Temperature-Induced Self-Assembly of Triple-Responsive Triblock Copolymers in Aqueous Solutions. Langmuir, 2011, 27, 4465-4473.	3.5	75
33	Effects of Organic Salt Additives on the Behavior of Dimeric ("Geminiâ€) Surfactants in Aqueous Solution. Langmuir, 2007, 23, 10044-10052.	3.5	73
34	Synthesis of Symmetrical Triblock Copolymers of Styrene and <i>N</i> â€isopropylacrylamide Using Bifunctional Bis(trithiocarbonate)s as RAFT Agents. Macromolecular Chemistry and Physics, 2009, 210, 565-578.	2.2	73
35	Tailoring of Stimuli-Responsive Water Soluble Acrylamide and Methacrylamide Polymers. Macromolecular Chemistry and Physics, 2001, 202, 276-286.	2.2	72
36	Smart bioactive surfaces. Soft Matter, 2010, 6, 705-713.	2.7	72

3

#	Article	IF	CITATIONS
37	Mobility of spin probes in ionic liquids. Journal of Physical Organic Chemistry, 2006, 19, 318-325.	1.9	71
38	Influencing the phase transition temperature of poly(methoxy diethylene glycol acrylate) by molar mass, end groups, and polymer architecture. Journal of Polymer Science Part A, 2012, 50, 3313-3323.	2.3	69
39	Spacer effects in dimeric cationic surfactants. Colloid and Polymer Science, 2005, 283, 469-479.	2.1	67
40	Synthesis of a Hemicyanine Dye Bearing Two Carboxylic Groups and Its Use as a Photosensitizer in Dye-Sensitized Photoelectrochemical Cells. Chemistry of Materials, 2001, 13, 3888-3892.	6.7	65
41	Interactions of a zwitterionic polysoap and its cationic analog with inorganic salts. Die Makromolekulare Chemie Rapid Communications, 1991, 12, 427-433.	1.1	64
42	Thermoresponsive PEG-Based Polymer Layers: Surface Characterization with AFM Force Measurements. Langmuir, 2010, 26, 3462-3467.	3.5	64
43	Modulating the solubility of zwitterionic poly((3-methacrylamidopropyl)ammonioalkane sulfonate)s in water and aqueous salt solutions via the spacer group separating the cationic and the anionic moieties. Polymer Chemistry, 2016, 7, 731-740.	3.9	64
44	Zwitterionic polymers with carbobetaine moieties. Polymer, 1996, 37, 2011-2019.	3.8	62
45	Layered Nanostructures with LC-Polymers, Polyelectrolytes, and Inorganics. Macromolecules, 1997, 30, 4775-4779.	4.8	60
46	Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions. Langmuir, 2019, 35, 1552-1562.	3.5	60
47	Switch It Inside-Out: "Schizophrenic―Behavior of All Thermoresponsive UCST–LCST Diblock Copolymers. Langmuir, 2019, 35, 9660-9676.	3.5	59
48	Zwitterionic polysoaps with reduced density of surfactant side groups. Die Makromolekulare Chemie, 1993, 194, 601-624.	1.1	58
49	Synthesis of Doubleâ€Hydrophilic BAB Triblock Copolymers via RAFT Polymerisation and their Thermoresponsive Selfâ€Assembly in Water. Macromolecular Chemistry and Physics, 2008, 209, 1389-1403.	2.2	58
50	Polymerizable and polymeric zwitterionic surfactants: 2. Surface activity and aggregation behaviour in aqueous systems. Polymer, 1991, 32, 2081-2086.	3.8	57
51	Aggregation Numbers of Cationic Oligomeric Surfactants:Â A Time-Resolved Fluorescence Quenching Study. Langmuir, 2006, 22, 2551-2557.	3.5	56
52	Effect of Polymer Charge and Geometrical Confinement on Ion Distribution and the Structuring in Semidilute Polyelectrolyte Solutions:  Comparison between AFM and SAXS. Macromolecules, 2006, 39, 7364-7371.	4.8	56
53	New Regular, Amphiphilic Poly(ampholyte)s: Synthesis and Characterization. Macromolecular Chemistry and Physics, 2004, 205, 1155-1166.	2.2	55
54	ESR Spin Probes in Ionic Liquids. ChemPhysChem, 2006, 7, 1106-1111.	2.1	55

#	Article	IF	CITATIONS
55	Amphiphilic Dual Brush Block Copolymers as "Giant Surfactants―and Their Aqueous Self-Assembly. Langmuir, 2010, 26, 3145-3155.	3.5	54
56	Amphiphilic dyes for nonlinear optics: Dependence of second harmonic generation on functional group substitution. Advanced Materials, 1991, 3, 54-58.	21.0	51
57	Thermoresponsive amphiphilic symmetrical triblock copolymers with a hydrophilic middle block made of poly(N-isopropylacrylamide): synthesis, self-organization, and hydrogel formation. Colloid and Polymer Science, 2010, 288, 499-517.	2.1	51
58	Molecular Recognition by Hydrogen Bonding in Polyelectrolyte Multilayers. Chemistry - A European Journal, 1997, 3, 34-38.	3.3	48
59	Water-soluble random and alternating copolymers of styrene monomers with adjustable lower critical solution temperature. Polymer Chemistry, 2012, 3, 352-361.	3.9	48
60	Ringâ€Opening Metathesis Polymerization of Biomassâ€Derived Levoglucosenol. Angewandte Chemie - International Edition, 2019, 58, 6718-6721.	13.8	48
61	Well-defined synthetic polymers with a protein-like gelation behavior in water. Chemical Communications, 2010, 46, 4517.	4.1	47
62	One-step RAFT synthesis of well-defined amphiphilic star polymers and their self-assembly in aqueous solution. Polymer Chemistry, 2012, 3, 1606.	3.9	47
63	Kinetics of Collapse Transition and Cluster Formation in a Thermoresponsive Micellar Solution of P(Sâ€ <i>b</i> â€NIPAMâ€ <i>b</i> â€S) Induced by a Temperature Jump. Macromolecular Rapid Communications, 2012, 33, 254-259.	3.9	47
64	"Schizophrenic―Micelles from Doubly Thermoresponsive Polysulfobetaine- <i>b</i> -poly(<i>N</i> -isopropylmethacrylamide) Diblock Copolymers. Macromolecules, 2017, 50, 3985-3999.	4.8	47
65	Self-assembly of double thermoresponsive block copolymers end-capped with complementary trimethylsilyl groups. Soft Matter, 2011, 7, 483-492.	2.7	46
66	Straightforward Access to Amphiphilic Dual Bottle Brushes by Combining RAFT, ATRP, and NMP Polymerization in One Sequence. Macromolecules, 2011, 44, 9635-9641.	4.8	46
67	Recent trends in the synthesis of polyelectrolytes. Current Opinion in Colloid and Interface Science, 2012, 17, 56-63.	7.4	46
68	Aggregation Behavior of Doubly Thermoresponsive Polysulfobetaine- <i>b</i> -poly(<i>N</i> -isopropylacrylamide) Diblock Copolymers. Macromolecules, 2016, 49, 6655-6668.	4.8	46
69	Ordered Polyelectrolyte Multilayers. Rules Governing Layering in Organic Binary Multilayers. Journal of the American Chemical Society, 2003, 125, 1859-1865.	13.7	45
70	Polymerizable Surfactants and Micellar Polymers Bearing Fluorocarbon Hydrophobic Chains Based on Styrene. Macromolecular Chemistry and Physics, 2001, 202, 3257-3267.	2.2	44
71	Neutron Reflectometry Study of Swelling of Polyelectrolyte Multilayers in Water Vapors: Influence of Charge Density of the Polycation. Langmuir, 2009, 25, 11576-11585.	3.5	44
72	On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1602-1618.	3.5	44

#	Article	IF	CITATIONS
73	Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy. Soft Matter, 2010, 6, 4262.	2.7	43
74	Swelling of Polyelectrolyte Multilayers: The Relation Between, Surface and Bulk Characteristics. Journal of Physical Chemistry B, 2015, 119, 11879-11886.	2.6	42
75	Layer-by-layer self-assembly of hydrophobically modified polyelectrolytes. Macromolecular Chemistry and Physics, 1999, 200, 609-615.	2.2	41
76	Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition. Polymer Chemistry, 2011, 2, 1486.	3.9	41
77	New poly(carbobetaine)s made from zwitterionic diallylammonium monomers. Macromolecular Chemistry and Physics, 1999, 200, 887-895.	2.2	40
78	Thermoresponsive Hydrogels from Symmetrical Triblock Copolymers Poly(styrene-block-(methoxy) Tj ETQq0 0 0	rgBT_/Over	lock 10 Tf 50
79	Cononsolvency of Water/Methanol Mixtures for PNIPAM and PS- <i>b</i> PNIPAM: Pathway of Aggregate Formation Investigated Using Time-Resolved SANS. Macromolecules, 2014, 47, 6867-6879.	4.8	40
80	Direct Observation of the Lower Critical Solution Temperature of Surface-Attached Thermo-Responsive Hydrogels by Surface Plasmon Resonance. Angewandte Chemie - International Edition, 2000, 39, 4602-4604.	13.8	39
81	Adsorption and Surface Elastic Properties of Corresponding Fluorinated and Nonfluorinated Cationic Polymer Films Measured by Drop Shape Analysis. Langmuir, 2001, 17, 5256-5264.	3.5	39
82	Surface Immobilization and Mechanical Properties of Catanionic Hollow Faceted Polyhedrons. Journal of Physical Chemistry B, 2006, 110, 1752-1758.	2.6	38
83	No Charge Reversal at Foam Film Surfaces after Addition of Oppositely Charged Polyelectrolytes?. Journal of Physical Chemistry B, 2009, 113, 7986-7990.	2.6	38
84	A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein. Journal of Materials Chemistry B, 2013, 1, 6373.	5.8	38
85	Lamellar Structured Nanoparticles Formed by Complexes of a Cationic Block Copolymer and Perfluorodecanoic Acid. Macromolecules, 2006, 39, 9337-9345.	4.8	37
86	Universal Polymer Analysis by ¹ H NMR Using Complementary Trimethylsilyl End Groups. Journal of the American Chemical Society, 2010, 132, 8757-8765.	13.7	37
87	Bulk and Thin Films of Bismuth Vanadates Prepared from Hybrid Materials Made from an Organic Polymer and Inorganic Salts. Chemistry of Materials, 2006, 18, 771-777.	6.7	36
88	Direct Evidence of Layer-by-Layer Assembly of Polyelectrolyte Multilayers on Soft and Porous Temperature-Sensitive PNiPAM Microgel Using Fluorescence Correlation Spectroscopyâ€. Journal of Physical Chemistry B, 2007, 111, 8527-8531.	2.6	36
89	Foam Films from Oppositely Charged Polyelectolyte/Surfactant Mixtures: Effect of Polyelectrolyte and Surfactant Hydrophobicity on Film Stability. Langmuir, 2010, 26, 9321-9327.	3.5	36
90	Effect of Ionic Strength and Layer Number on Swelling of Polyelectrolyte Multilayers in Water Vapour. Soft Materials, 2013, 11, 157-164.	1.7	36

#	Article	IF	CITATIONS
91	Labelâ€Free Biosensor Based on an Allâ€Polymer DFB Laser. Advanced Optical Materials, 2014, 2, 137-141.	7.3	36
92	"Schizophrenic―self-assembly of dual thermoresponsive block copolymers bearing a zwitterionic and a non-ionic hydrophilic block. Polymer, 2017, 122, 347-357.	3.8	36
93	Polyelectrolyte complexes at interfaces. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 1033-1038.	0.9	35
94	Ordered Polyelectrolyte "Multilayers". 5. Photo-Cross-Linking of Hybrid Films Containing an Unsaturated and Hydrophobized Poly(diallylammonium) Salt and Exfoliated Clay. Macromolecules, 2002, 35, 5004-5012.	4.8	35
95	Interaction forces between cellulose microspheres and ultrathin cellulose films monitored by colloidal probe microscopy—effect of wet strength agents. Journal of Colloid and Interface Science, 2005, 281, 101-111.	9.4	35
96	Effect of a new hydrophobically modified polyampholyte on the formation of inverse microemulsions and the preparation of gold nanoparticles. Journal of Colloid and Interface Science, 2007, 308, 162-169.	9.4	35
97	A gemini amphiphilic phase transfer catalyst for dark singlet oxygenation. Journal of Physical Organic Chemistry, 2008, 21, 652-658.	1.9	35
98	Tuning the Thickness of Polymer Brushes Grafted from Nonlinearly Growing Multilayer Assemblies. Langmuir, 2009, 25, 5949-5956.	3.5	35
99	Synthesis of Novel Sulfobetaine Polymers with Differing Dipole Orientations in Their Side Chains, and Their Effects on the Antifouling Properties. Macromolecular Rapid Communications, 2020, 41, e1900447.	3.9	35
100	Layer-by-Layer Adsorption of Identically Charged Polyelectrolytes. Macromolecules, 2000, 33, 1100-1102.	4.8	34
101	Quantifying the Interactions in the Aggregation of Thermoresponsive Polymers: The Effect of Cononsolvency. Macromolecular Rapid Communications, 2016, 37, 420-425.	3.9	34
102	Stability of Foam Films of Oppositely Charged Polyelectrolyte/Surfactant Mixtures: Effect of Isoelectric Point. Journal of Physical Chemistry B, 2011, 115, 14475-14483.	2.6	33
103	The collapse transition and the segmental dynamics in concentrated micellar solutions of P(S-b-NIPAM) diblock copolymers. Colloid and Polymer Science, 2011, 289, 711-720.	2.1	33
104	Collapse transition in thin films of poly(methoxydiethylenglycol acrylate). Colloid and Polymer Science, 2011, 289, 569-581.	2.1	33
105	Switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) probed with in situ neutron reflectivity. Soft Matter, 2012, 8, 5241.	2.7	33
106	Dual Orthogonal Switching of the "Schizophrenic―Self-Assembly of Diblock Copolymers. Macromolecules, 2018, 51, 2604-2614.	4.8	33
107	Exploring the Long-Term Hydrolytic Behavior of Zwitterionic Polymethacrylates and Polymethacrylamides. Polymers, 2018, 10, 639.	4.5	32
108	Temperature-Dependent Phase Behavior of the Thermoresponsive Polymer Poly(<i>N</i> -isopropylmethacrylamide) in an Aqueous Solution. Macromolecules, 2020, 53, 6816-6827.	4.8	32

#	Article	IF	CITATIONS
109	Title is missing!. Die Makromolekulare Chemie, 1986, 187, 1843-1853.	1.1	31
110	Monolayers and Langmuir-Blodgett Multilayers of Discotic Liquid Crystals?. Angewandte Chemie International Edition in English, 1989, 28, 1574-1577.	4.4	31
111	Polyelectrolyte multilayers containing photoreactive groups. Macromolecular Chemistry and Physics, 1997, 198, 3239-3253.	2.2	31
112	Photochemical modification of the lower critical solution temperature of cinnamoylated poly(N-2-hydroxypropylmethacrylamide) in water. Macromolecular Rapid Communications, 2000, 21, 937-940.	3.9	31
113	New anionic gemini surfactant based on EDTA accessible by convenient synthesis. Colloid and Polymer Science, 2007, 285, 1387-1393.	2.1	31
114	Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces. Polymer Chemistry, 2011, 2, 137-147.	3.9	31
115	Formation of Monodisperse Charged Vesicles in Mixtures of Cationic Gemini Surfactants and Anionic SDS. Langmuir, 2011, 27, 582-591.	3.5	31
116	One-Step Synthesis of Amphiphilic, Double Thermoresponsive Diblock Copolymers. Macromolecules, 2012, 45, 4158-4165.	4.8	31
117	Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers. Journal of Materials Chemistry C, 2013, 1, 6603.	5.5	31
118	Characterization of New Amphiphilic Block Copolymers of <i>N</i> â€Vinylpyrrolidone and Vinyl Acetate, 2 ―Chromatographic Separation and Analysis by MALDIâ€TOF and FTâ€IR Coupling. Macromolecular Chemistry and Physics, 2010, 211, 1678-1688.	2.2	30
119	On the influence of the architecture of poly(ethylene glycol)-based thermoresponsive polymers on cell adhesion. Biomicrofluidics, 2012, 6, 024129.	2.4	30
120	Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers – influence of concentration, start and target temperatures. Soft Matter, 2013, 9, 1685-1699.	2.7	30
121	Photoreactive oligoethylene glycol polymers – versatile compounds for surface modification by thin hydrogel films. Soft Matter, 2013, 9, 929-937.	2.7	30
122	Structure and Thermal Response of Thin Thermoresponsive Polystyrene- <i>block</i> -poly(methoxydiethylene glycol acrylate)- <i>block</i> -polystyrene Films. Macromolecules, 2013, 46, 4069-4080.	4.8	30
123	Monolayers and Langmuir–Blodgett Multilayers of Discotic Liquid Crystals?. Angewandte Chemie, 1989, 101, 1606-1609.	2.0	28
124	Non-ionic amphiphilic block copolymers by RAFT-polymerization and their self-organization. Colloid and Polymer Science, 2006, 284, 1243-1254.	2.1	28
125	Short versus long chain polyelectrolyte multilayers: a direct comparison of self-assembly and structural properties. Physical Chemistry Chemical Physics, 2014, 16, 21988-21998.	2.8	28
126	Exploring Poly(ethylene glycol)-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution. Polymers, 2018, 10, 325.	4.5	28

#	Article	IF	CITATIONS
127	Sediment challenge to promising ultra-low fouling hydrophilic surfaces in the marine environment. Biofouling, 2019, 35, 454-462.	2.2	28
128	Swelling and Exchange Behavior of Poly(sulfobetaine)-Based Block Copolymer Thin Films. Macromolecules, 2019, 52, 3486-3498.	4.8	28
129	Phase Transition Kinetics of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films. Macromolecules, 2020, 53, 2841-2855.	4.8	28
130	Enhanced Förster Resonance Energy Transfer in Electrostatically Self-Assembled Multilayer Films Made from New Fluorescently Labeled Polycations. Langmuir, 2003, 19, 7963-7969.	3.5	27
131	Smart Polymer Surfaces: Concepts and Applications in Biosciences. Advances in Polymer Science, 2010, , 1-33.	0.8	27
132	Radical addition fragmentation chain transfer (RAFT) polymerization of ferrocenyl (Meth)acrylates. Journal of Polymer Science Part A, 2012, 50, 108-118.	2.3	27
133	Polysoaps via alternating olefin/SO2 copolymers. Die Makromolekulare Chemie Rapid Communications, 1991, 12, 189-196.	1.1	26
134	Influence of imidazoliumâ€based ionic liquids on the synthesis of amphiphilic copolymers based on <i>n</i> â€butylmethacrylate and a zwitterionic methacrylate. Polymers for Advanced Technologies, 2008, 19, 1383-1390.	3.2	26
135	Design of Thermoresponsive Materials by ATRP of Oligo(ethylene glycol)-based (Macro)monomers. ACS Symposium Series, 2009, , 189-202.	0.5	26
136	Bioinspired Block Copolymers: Translating Structural Features from Proteins to Synthetic Polymers. Macromolecular Chemistry and Physics, 2010, 211, 215-221.	2.2	26
137	Structure and Dynamics of Networks in Mixtures of Hydrophobically Modified Telechelic Multiarm Polymers and Oil in Water Microemulsions. Langmuir, 2012, 28, 15994-16006.	3.5	26
138	Arrangement of Maghemite Nanoparticles via Wet Chemical Self-Assembly in PS- <i>b</i> -PNIPAM Diblock Copolymer Films. ACS Applied Materials & Interfaces, 2015, 7, 13080-13091.	8.0	26
139	Influence of Hydrophobic Polystyrene Blocks on the Rehydration of Polystyrene- <i>block</i> -poly(methoxy diethylene glycol acrylate)- <i>block</i> -polystyrene Films Investigated by <i>in Situ</i> Neutron Reflectivity. Macromolecules, 2016, 49, 317-326.	4.8	26
140	The structural order of some novel ionic polymers, 1. X-ray scattering studies. Die Makromolekulare Chemie, 1992, 193, 1815-1827.	1.1	25
141	Polyelectrolytes bearing azobenzenes for the functionalization of multilayers. Macromolecular Symposia, 1999, 137, 1-24.	0.7	25
142	An Esterolytic Imprinted Polymer Prepared via a Silica-Supported Transition State Analogue. Chemistry of Materials, 2004, 16, 2745-2749.	6.7	25
143	Free-Standing Membranes via Covalent Cross-Linking of Polyelectrolyte Multilayers with Complementary Reactivity. Langmuir, 2010, 26, 18182-18188.	3.5	25
144	Surface Modification by Polyzwitterions of the Sulfabetaine-Type, and Their Resistance to Biofouling. Polymers, 2019, 11, 1014.	4.5	25

#	Article	IF	CITATIONS
145	Relaxation and charge transport in mixtures of zwitterionic polymers and inorganic salts. Macromolecular Chemistry and Physics, 1995, 196, 877-890.	2.2	24
146	Self-assembly of Janus Cyclodextrins at the Air-Water Interface and in Organic Solvents. Chemistry - A European Journal, 1999, 5, 546-556.	3.3	24
147	Orientation of Nonlinear Optical Active Dyes in Electrostatically Self-Assembled Polymer Films Containing Cyclodextrins. Macromolecules, 2000, 33, 9471-9473.	4.8	24
148	Characterization of hydrocarbon and fluorocarbon microdomains formed in aqueous solution of associative polymers: A molecular probe technique. Journal of Fluorine Chemistry, 2005, 126, 1409-1418.	1.7	24
149	Thermoresponsive (star) block copolymers from one-pot sequential RAFT polymerizations and their self-assembly in aqueous solution. Polymer, 2016, 107, 422-433.	3.8	24
150	Free Radical Polymerization of Methacrylates in Ionic Liquids. ACS Symposium Series, 2005, , 17-36.	0.5	23
151	Partially Fluorinated Maleimide Copolymers for Langmuir Films of Improved Stability. 2. Spreading Behavior and Multilayer Formation. Langmuir, 1997, 13, 310-319.	3.5	22
152	Photophysical Properties of an Amphiphilic Cationic Hemicyanine Dye in Solution and Adsorbed on a TiO2Mesoporous Film. Langmuir, 1997, 13, 259-263.	3.5	22
153	A New Technique for Assembling Thin, Defined Multilayers. Angewandte Chemie International Edition in English, 1997, 36, 2788-2791.	4.4	22
154	Synthesis and free radical copolymerisation of new zwitterionic monomers: amphiphilic carbobetaines based on isobutylene. European Polymer Journal, 2001, 37, 877-885.	5.4	22
155	A regular, hydrophobically modified polyampholyte as novel pour point depressant. Journal of Applied Polymer Science, 2005, 98, 2101-2108.	2.6	22
156	Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules, 2021, 22, 1494-1508.	5.4	22
157	Preparation of simple and mixed nickel and cobalt molybdates using hybrid precursors made from an ordered polymer matrix and inorganic salts. Journal of Materials Chemistry, 2004, 14, 3421.	6.7	21
158	Rehydration of Thermoresponsive Poly(monomethoxydiethylene glycol acrylate) Films Probed <i>in Situ</i> by Real-Time Neutron Reflectivity. Macromolecules, 2015, 48, 3604-3612.	4.8	21
159	Effect of chain architecture on the swelling and thermal response of star-shaped thermo-responsive (poly(methoxy diethylene glycol acrylate)-block-polystyrene)3 block copolymer films. Soft Matter, 2018, 14, 6582-6594.	2.7	21
160	Hydration and Dehydration Kinetics: Comparison between Poly(<i>N</i> -isopropyl methacrylamide) and Poly(methoxy diethylene glycol acrylate) Films. Langmuir, 2019, 35, 7691-7702.	3.5	21
161	Polysoaps in Aqueous Solutions:Â Intermolecular versus Intramolecular Hydrophobic Aggregation Studied by Fluorescence Spectroscopy. Langmuir, 2001, 17, 2579-2584.	3.5	20
162	Influence of Charge Density and Distribution on the Internal Structure of Electrostatically Self-assembled Polyelectrolyte Films. Langmuir, 2002, 18, 1655-1660.	3.5	20

#	ARTICLE	IF	CITATIONS
163	A facile precursor route to transition metal molybdates using a polyzwitterionic matrix bearing simultaneously charged moieties and complexing groups. Journal of Materials Chemistry, 2005, 15, 1668.	6.7	20
164	Characterization of New Amphiphilic Block Copolymers of <i>N</i> â€Vinyl Pyrrolidone and Vinyl Acetate, 1 – Analysis of Copolymer Composition, End Groups, Molar Masses and Molar Mass Distributions. Macromolecular Chemistry and Physics, 2010, 211, 869-878.	2.2	20
165	On the Interaction of Adherent Cells with Thermoresponsive Polymer Coatings. Polymers, 2014, 6, 1164-1177.	4.5	20
166	All-In-One "Schizophrenic―Self-Assembly of Orthogonally Tuned Thermoresponsive Diblock Copolymers. Langmuir, 2019, 35, 6441-6452.	3.5	20
167	Effects of crosslink density in zwitterionic hydrogel coatings on their antifouling performance and susceptibility to silt uptake. Biofouling, 2020, 36, 646-659.	2.2	20
168	Self-Assembled Micelles from Thermoresponsive Poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 Td (meth Macromolecules, 2021, 54, 384-397.	acrylate)- 4.8	<i>b</i> poly 20
169	PMMA- <i>b</i> -PNIPAM Thin Films Display Cononsolvency-Driven Response in Mixed Water/Methanol Vapors. Macromolecules, 2021, 54, 3517-3530.	4.8	20
170	Aggregation phenomena in polyelectrolyte multilayers made from polyelectrolytes bearing bulky functional, hydrophobic fragments. Macromolecular Symposia, 2004, 211, 135-156.	0.7	19
171	Investigation of a dual set of driving forces (hydrophobic + electrostatic) for the two-step fabrication of defined block copolymer micelles. Soft Matter, 2007, 3, 694-698.	2.7	19
172	Ring-Opening Metathesis Polymerization of Unsaturated Carbohydrate Derivatives: Levoglucosenyl Alkyl Ethers. Macromolecules, 2021, 54, 2720-2728.	4.8	19
173	Effects of PEC-Based Thermoresponsive Polymer Brushes on Fibroblast Spreading and Gene Expression. Cellular and Molecular Bioengineering, 2013, 6, 287-298.	2.1	18
174	Material transport and organizing phenomena of Langmuir—Blodgett membranes from polymerizable built up diacetylene amphiphiles on hydrophobic supports. Journal of Membrane Science, 1986, 26, 63-77.	8.2	17
175	The structural order of some novel ionic polymers, 2. Models of molecular packing. Die Makromolekulare Chemie, 1992, 193, 1829-1838.	1.1	17
176	Dynamics of microemulsions bridged with hydrophobically end-capped star polymers studied by neutron spin-echo. Journal of Chemical Physics, 2014, 140, 034902.	3.0	17
177	Novel thermoresponsive block copolymers having different architectures—structural, rheological, thermal, and dielectric investigations. Colloid and Polymer Science, 2014, 292, 1757-1774.	2.1	17
178	Poly(sulfobetaine) versus Poly(<i>N</i> -isopropylmethacrylamide): Co-Nonsolvency-Type Behavior of Thin Films in a Water/Methanol Atmosphere. Macromolecules, 2021, 54, 1548-1556.	4.8	17
179	Partially fluorinated maleimide copolymers for Langmuir films of improved stability, 1. Synthesis, copolymerisation behaviour and bulk properties. Macromolecular Chemistry and Physics, 1997, 198, 401-418.	2.2	16
180	Multicompartment micelles from silicone-based triphilic block copolymers. Colloid and Polymer Science, 2013, 291, 2561-2567.	2.1	16

#	Article	IF	CITATIONS
181	Ringâ€Opening Metathesis Polymerization of Biomassâ€Derived Levoglucosenol. Angewandte Chemie, 2019, 131, 6790-6793.	2.0	16
182	Thermo-responsive Amphiphilic Di- and Triblock Copolymers Based on Poly(N-isopropylacrylamide) and Poly(methoxy diethylene glycol acrylate): Aggregation and Hydrogel Formation in Bulk Solution and in Thin Films. , 2013, , 15-34.		16
183	Aspects of Free Radical Polymerization of Styrene and <i>n</i> â€Butylmethacrylate in Imidazolium Tosylates. Macromolecular Symposia, 2009, 275–276, 242-249.	0.7	15
184	Ionic Liquids as Advantageous Reaction Media for Free Radical Polymerization. Macromolecular Symposia, 2014, 342, 78-85.	0.7	15
185	The Effect of Temperature Treatment on the Structure of Polyelectrolyte Multilayers. Polymers, 2016, 8, 120.	4.5	15
186	Vacuum induced dehydration of swollen poly(methoxy diethylene glycol acrylate) and polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films probed by in-situ neutron reflectivity. Polymer, 2017, 124, 263-273.	3.8	14
187	Monolayers and Langmuir-Blodgett multilayers of discotic liquid crystals?. Advanced Materials, 1989, 1, 392-395.	21.0	13
188	Cross-Linkable Polyelectrolyte Multilayer Films of Tailored Charge Density. Chemistry of Materials, 2010, 22, 3323-3331.	6.7	13
189	Temperatureâ€Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte. Macromolecular Chemistry and Physics, 2013, 214, 435-445.	2.2	13
190	Layer-by-Layer Formation of Oligoelectrolyte Multilayers: A Combined Experimental and Computational Study. Soft Materials, 2014, 12, S14-S21.	1.7	13
191	Self-aggregation of cationic dimeric surfactants in water–ionic liquid binary mixtures. Journal of Colloid and Interface Science, 2014, 430, 326-336.	9.4	13
192	Phase Behavior of Nonionic Microemulsions with Multi-end-capped Polymers and Its Relation to the Mesoscopic Structure. Langmuir, 2015, 31, 5198-5209.	3.5	13
193	Influence of the Near Molecular Vicinity on the Temperature Regulated Fluorescence Response of Poly(N-vinylcaprolactam). Polymers, 2016, 8, 109.	4.5	13
194	Co-Nonsolvency Effect in Solutions of Poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 Td (methacrylate)- Mixtures. Macromolecules, 2021, 54, 5825-5837.	<i>b</i> -p 4.8	ooly(<i>N</i> - 13
195	Hybrid materials from organic polymers and inorganic salts. Macromolecular Symposia, 1994, 88, 165-175.	0.7	12
196	Homogeneous mixtures of polybetaines with low molecular weight salts. Macromolecular Symposia, 1996, 102, 273-280.	0.7	12
197	Novel nonionic surfactants based on sulfoxides. 2. Homo- and copolymers. Colloid and Polymer Science, 2003, 281, 807-814.	2.1	12
198	Nanoheterogeneous Multilayer Films with Perfluorinated Domains Fabricated Using the Layer-by-Layer Method. Langmuir, 2010, 26, 11915-11920.	3.5	12

#	Article	IF	CITATIONS
199	Electrochemical Detection of the Thermally Induced Phase Transition of a Thin Stimuliâ€Responsive Polymer Film. ChemPhysChem, 2012, 13, 2020-2023.	2.1	12
200	Thermoresponsive Polymers and Inverse Opal Hydrogels for the Detection of Diols. Langmuir, 2016, 32, 4333-4345.	3.5	12
201	Thermoresponsive amperometric glucose biosensor. Biointerphases, 2016, 11, 011001.	1.6	12
202	Polysulfobetaines in Aqueous Solution and in Thin Film Geometry. Materials, 2018, 11, 850.	2.9	12
203	Hybrid materials made from polymeric betaines and low molar mass salts. Macromolecular Symposia, 1997, 117, 195-206.	0.7	11
204	Photophysical Behavior of a New Gemini Surfactant in Neat Solvents and in Micellar Environments. Journal of Colloid and Interface Science, 2000, 227, 476-481.	9.4	11
205	Engineering Adhesion to Thermoresponsive Substrates: Effect of Polymer Composition on Liquid–Liquid–Solid Wetting. ACS Applied Materials & Interfaces, 2015, 7, 2518-2528.	8.0	11
206	Effects of Methacrylate-Based Thermoresponsive Polymer Brush Composition on Fibroblast Adhesion and Morphology. Cellular and Molecular Bioengineering, 2017, 10, 75-88.	2.1	11
207	Tuning reversible cell adhesion to methacrylate-based thermoresponsive polymers: Effects of composition on substrate hydrophobicity and cellular responses. Journal of Biomedical Materials Research - Part A, 2017, 105, 2416-2428.	4.0	11
208	Cyclic Water Storage Behavior of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films. Macromolecules, 2020, 53, 9108-9121.	4.8	11
209	Effect of Dipole Orientation in Mixed, Charge-Equilibrated Self-assembled Monolayers on Protein Adsorption and Marine Biofouling. ACS Applied Materials & Interfaces, 2020, 12, 50953-50961.	8.0	11
210	Low Fouling Polysulfobetaines with Variable Hydrophobic Content. Macromolecular Rapid Communications, 2022, 43, e2100589.	3.9	11
211	Synthesis of homopolymers and copolymers of bulky fumarates, and their spreading behaviour in insoluble monolayers. European Polymer Journal, 1994, 30, 891-899.	5.4	10
212	Copolymerization Behavior of an Isobutenyl-Based Surfmer. Macromolecules, 1999, 32, 5967-5969.	4.8	10
213	Cationic and perfluorinated polymeric pseudostationary phases for electrokinetic chromatography. Journal of Chromatography A, 2006, 1106, 29-35.	3.7	10
214	Stratified Micellar Multilayers—Toward Nanostructured Photoreactors. Chemistry of Materials, 2016, 28, 2219-2228.	6.7	10
215	Comparative Investigation of the Thermoresponsive Behavior of Two Diblock Copolymers Comprising PNIPAM and PMDEGA Blocks. Journal of Physical Chemistry B, 2018, 122, 2655-2668.	2.6	10
216	Salt-Dependent Phase Transition Behavior of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films. Langmuir, 2021, 37, 9179-9191.	3.5	10

#	Article	IF	CITATIONS
217	Multilayers by adsorption of functional polyelectrolytes. Macromolecular Symposia, 1998, 126, 105-121.	0.7	9
218	Films grown from polyamines and reactive dyes by alternating polyelectrolyte adsorption/surface activation (CoMPAS). Materials Science and Engineering C, 1999, 10, 107-113.	7.3	9
219	Surface modification with thermoresponsive polymer brushes for a switchable electrochemical sensor. RSC Advances, 2014, 4, 43092-43097.	3.6	9
220	Polystyrene-block-poly (methoxy diethylene glycol acrylate)-block-polystyrene triblock copolymers in aqueous solution—a SANS study of the temperature-induced switching behavior. Colloid and Polymer Science, 2015, 293, 1515-1523.	2.1	9
221	Thermoresponsive Self-Assembly of Twofold Fluorescently Labeled Block Copolymers in Aqueous Solution and Microemulsions. Langmuir, 2021, , .	3.5	9
222	Redox-active polymers by group-transfer polymerization: physical, electrochemical and electronic properties. Polymer, 1991, 32, 146-159.	3.8	8
223	Reactive hydrogels grafted on gold surfaces. Macromolecular Symposia, 2001, 164, 323-340.	0.7	8
224	Swelling Behavior and Complex Formation Ability of Ternary Amphoteric Gels based on Allylamine Derivatives and Maleic Acid. Macromolecular Materials and Engineering, 2005, 290, 769-777.	3.6	8
225	Poly(N,N-bis(2-methoxyethyl)acrylamide), a thermoresponsive non-ionic polymer combining the amide and the ethyleneglycolether motifs. Colloid and Polymer Science, 2021, 299, 205-219.	2.1	8
226	Solvation Behavior of Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Mixed Water/Methanol Vapors. Macromolecules, 2021, 54, 7147-7159.	4.8	8
227	Ordered Polyelectrolyte "Multilayersâ€. 7. Hybrid Films Self-Assembled from Fluorescent and Smectogenic Poly(diallylammonium) Salts and Delaminated Clay. Chemistry of Materials, 2006, 18, 3078-3087.	6.7	7
228	Photoinduced electron transfer in multilayer films composed of conjugated polyelectrolyte and amphiphilic copolymer hosting electron acceptor molecules. Journal of Materials Chemistry, 2012, 22, 140-145.	6.7	7
229	Counterintuitive Photomodulation of the Thermal Phase Transition of Poly(methoxy diethylene) Tj ETQq1 1 0.784	4314 rgBT 2.2	/Overlock 10
	Azobenzenes. Macromolecular Chemistry and Physics, 2013, 214, 1504-1514.		
230	Temperature-Regulated Fluorescence and Association of an Oligo(ethyleneglycol)methacrylate-Based Copolymer with a Conjugated Polyelectrolyte—The Effect of Solution Ionic Strength. Journal of Physical Chemistry B, 2013, 117, 14576-14587.	2.6	7
231	Block Copolymer Micelles with an Intermediate Starâ€∤Flowerâ€Like Structure Studied by ¹ H NMR Relaxometry. Macromolecular Chemistry and Physics, 2014, 215, 915-919.	2.2	7
232	Polyelectrolyte multilayers with perfluorinated phthalocyanine selectively entrapped inside the perfluorinated nanocompartments. Soft Matter, 2014, 10, 1481-1488.	2.7	7
233	Photoinduced Energy and Electron Transfer in Micellar Multilayer Films. Journal of Physical Chemistry C, 2014, 118, 2215-2221.	3.1	7
234	Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Water/Acetone Atmosphere: Modulation of Water Hydration and Co-nonsolvency-Triggered Film Contraction. Langmuir, 2022, 38, 6934-6948.	3.5	7

#	Article	IF	CITATIONS
235	Optimization of the property profile of polyâ€ <scp>L</scp> ″actide by synthesis of PLLAâ€polystyrene–block copolymers. Journal of Applied Polymer Science, 2013, 127, 120-126.	2.6	6
236	Stars and Blocks: Tailoring Polymeric Rheology Modifiers for Aqueous Media by Controlled Free Radical Polymerization. ACS Symposium Series, 2013, , 125-143.	0.5	6
237	Influence of the surfactant degree of oligomerization on the formation of cyclodextrin: surfactant inclusion complexes. Arabian Journal of Chemistry, 2020, 13, 2318-2330.	4.9	6
238	Aggregation Behavior of Nonsymmetrically End-Capped Thermoresponsive Block Copolymers in Aqueous Solutions: Between Polymer Coils and Micellar States. Macromolecules, 2022, 55, 5849-5863.	4.8	6
239	Electrochemical characterization of a responsive macromolecular interface on gold. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1359-1367.	1.8	5
240	Influence of the degree of oligomerization of surfactants on the DNA/surfactant interaction. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110399.	5.0	5
241	Unsymmetrical bifunctional trithiocarbonate as unexpected by-product in the synthesis of a dithioester RAFT agent. Colloid and Polymer Science, 2007, 285, 947-952.	2.1	4
242	Ternary Nanoswitches Realized with Multiresponsive PMMA―b â€PNIPMAM Films in Mixed Water/Acetone Vapor Atmospheres. Advanced Engineering Materials, 2021, 23, 2100191.	3.5	4
243	Polymeric films from the alternating chemisorption of poly(vinylbenzylchloride) and a 4′-hydroxystilbazole dye. Materials Science and Engineering C, 2001, 18, 239-242.	7.3	3
244	Lipid Monolayers with Adsorbed Oppositely Charged Polyelectrolytes: Influence of Reduced Charge Densities. Polymers, 2014, 6, 1999-2017.	4.5	3
245	Flexible thermoresponsive nanomembranes at the aqueous–air interface. Chemical Communications, 2015, 51, 877-880.	4.1	3