
Aida A Pérez Fonseca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8350835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Industrial Crops and Products, 2017, 99, 117-125.	2.5	91
2	Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Composite Interfaces, 2017, 24, 35-53.	1.3	85
3	Polylactic acid functionalization with maleic anhydride and its use as coupling agent in natural fiber biocomposites: a review. Composite Interfaces, 2018, 25, 515-538.	1.3	69
4	Effect of hybridization on the physical and mechanical properties of high density polyethylene–(pine/agave) composites. Materials & Design, 2014, 64, 35-43.	5.1	58
5	Accelerated weathering of poly(lactic acid) and its biocomposites: A review. Polymer Degradation and Stability, 2020, 179, 109290.	2.7	56
6	Effect of Maleated PLA on the Properties of Rotomolded PLA-Agave Fiber Biocomposites. Journal of Polymers and the Environment, 2019, 27, 61-73.	2.4	50
7	A Critical Overview of Adsorption Models Linearization: Methodological and Statistical Inconsistencies. Separation and Purification Reviews, 2022, 51, 358-372.	2.8	48
8	Polylactic acid–agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Advances in Polymer Technology, 2018, 37, 2528-2540.	0.8	46
9	Effect of thermal annealing on the mechanical and thermal properties of polylactic acid–cellulosic fiber biocomposites. Journal of Applied Polymer Science, 2016, 133, .	1.3	45
10	Effect of coupling agent content and water absorption on the mechanical properties of coirâ€agave fibers reinforced polyethylene hybrid composites. Polymer Composites, 2016, 37, 3015-3024.	2.3	44
11	Improving the Compatibility and Mechanical Properties of Natural Fibers/Green Polyethylene Biocomposites Produced by Rotational Molding. Journal of Polymers and the Environment, 2020, 28, 1040-1049.	2.4	41
12	Benzene, toluene, and o-xylene degradation by free and immobilized P. putida F1 of postconsumer agave-fiber/polymer foamed composites. International Biodeterioration and Biodegradation, 2011, 65, 539-546.	1.9	39
13	Rotomolded polyethylene-agave fiber composites: Effect of fiber surface treatment on the mechanical properties. Polymer Engineering and Science, 2016, 56, 856-865.	1.5	36
14	Congo red adsorption with cellulose-graphene nanoplatelets beads by differential column batch reactor. Journal of Environmental Chemical Engineering, 2021, 9, 105029.	3.3	34
15	Chemically Modified Polysaccharides for Hexavalent Chromium Adsorption. Separation and Purification Reviews, 2021, 50, 333-362.	2.8	30
16	Chitosan Supported onto Agave Fiber—Postconsumer HDPE Composites for Cr(VI) Adsorption. Industrial & Engineering Chemistry Research, 2012, 51, 5939-5946.	1.8	28
17	Valorization of Sugarcane Straw for the Development of Sustainable Biopolymer-Based Composites. Polymers, 2021, 13, 3335.	2.0	22
18	Fixed-bed adsorption of Cr(VI) onto chitosan supported on highly porous composites. Environmental Technology and Innovation, 2020, 19, 100824.	3.0	20

#	Article	IF	CITATIONS
19	Self-hybridization and Coupling Agent Effect on the Properties of Natural Fiber/HDPE Composites. Journal of Polymers and the Environment, 2015, 23, 126-136.	2.4	19
20	Compressive strength study of cement mortars lightened with foamed HDPE nanocomposites. Materials & Design, 2015, 74, 119-124.	5.1	19
21	Biodegradability and improved mechanical performance of polyhydroxyalkanoates/agave fiber biocomposites compatibilized by different strategies. Journal of Applied Polymer Science, 2021, 138, 50182.	1.3	19
22	Injection molded selfâ€hybrid composites based on polypropylene and natural fibers. Polymer Composites, 2014, 35, 1798-1806.	2.3	18
23	Effect of surface treatment on the physical and mechanical properties of injection molded poly(lactic) Tj ETQq1 1	0,784314 2.3	rgBT /Overl
24	Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with Hydroxyvalerate: A Review. Journal of Polymers and the Environment, 2021, 29, 1350-1364.	2.4	17
25	Highly porous lignin composites for dye removal in batch and continuous-flow systems. Materials Letters, 2020, 263, 127289.	1.3	16
26	Accelerated Weathering of Polylactic Acid/Agave Fiber Biocomposites and the Effect of Fiber–Matrix Adhesion. Journal of Polymers and the Environment, 2021, 29, 937-947.	2.4	15
27	Biosynthesis of silver nanoparticles using a natural extract obtained from an agroindustrial residue of the tequila industry. Materials Letters, 2018, 213, 278-281.	1.3	14
28	Evaluation of the Cr(VI) Adsorption Performance of Xanthate Polysaccharides Supported onto Agave Fiber-LDPE Foamed Composites. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	13
29	Plasma-enhanced modification of polysaccharides for wastewater treatment: A review. Carbohydrate Polymers, 2021, 252, 117195.	5.1	13
30	GLYCIDYL METHACRYLATE AS COMPATIBILIZER OF POLY(LACTIC ACID)/NANOCLAY/AGAVE FIBER HYBRID BIOCOMPOSITES: EFFECT ON THE PHYSICAL AND MECHANICAL PROPERTIES. Revista Mexicana De Ingeniera Quimica, 2019, 19, 455-469.	0.2	12
31	Effect of low nanoclay content on the physico-mechanical properties of poly(lactic acid) nanocomposites. Polymers and Polymer Composites, 2019, 27, 43-54.	1.0	10
32	Fiber-matrix interface improvement via glycidyl methacrylate compatibilization for rotomolded poly(lactic acid)/agave fiber biocomposites. Journal of Composite Materials, 2021, 55, 201-212.	1.2	10
33	Influence of the blending method over the thermal and mechanical properties of biodegradable polylactic acid/polyhydroxybutyrate blends and their wood biocomposites. Polymers for Advanced Technologies, 2021, 32, 3483-3494.	1.6	10
34	Influence of agro-industrial wastes over the abiotic and composting degradation of polylactic acid biocomposites. Journal of Composite Materials, 2022, 56, 43-56.	1.2	8
35	A discussion on linear and non-linear forms of Thomas equation for fixed-bed adsorption column modeling. Revista Mexicana De Ingeniera Quimica, 2021, 20, 875-884.	0.2	6
36	Compatibilization strategies for PLA biocomposites: a comparative study between extrusion-injection and dry blending-compression molding. Composite Interfaces, 2022, 29, 274-292.	1.3	6

#	Article	IF	CITATIONS
37	Improvement of Pb(II) Adsorption Capacity by Controlled Alkali Treatment to Chitosan Supported onto Agave Fiberâ€HDPE Composites. Macromolecular Symposia, 2017, 374, 1600104.	0.4	5
38	Synthesis of silanized chitosan anchored onto porous composite and its performance in fixed-bed adsorption of Cr(VI). Journal of Environmental Chemical Engineering, 2021, 9, 106353.	3.3	5
39	Increasing the efficiency of organic solar cells by using a bulk electron transport layer of PFN and green synthesized AgNs. Materials Letters, 2019, 237, 101-104.	1.3	3
40	Calculating adsorption efficiencies and reusability cycles by retrieving the concept of operating lines. Separation Science and Technology, 2022, 57, 2708-2717.	1.3	1