
## Urszula Narkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8350713/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Effect of the Modification of Carbon Spheres with ZnCl2 on the Adsorption Properties towards CO2. Molecules, 2022, 27, 1387.                                                               | 1.7 | 9         |
| 2  | Magnetic Resonance Studies of Hybrid Nanocomposites Containing Nanocrystalline TiO2 and Graphene-Related Materials. Materials, 2022, 15, 2244.                                                 | 1.3 | 0         |
| 3  | New Insight on Carbon Dioxideâ€Mediated Hydrogen Production**. ChemistryOpen, 2022, 11, e202100262.                                                                                            | 0.9 | 2         |
| 4  | CO2 Reduction to Valuable Chemicals on TiO2-Carbon Photocatalysts Deposited on Silica Cloth.<br>Catalysts, 2022, 12, 31.                                                                       | 1.6 | 8         |
| 5  | Effective green ammonia synthesis from gaseous nitrogen and CO2 saturated-water vapour utilizing a novel photocatalytic reactor. Chemical Engineering Journal, 2022, 446, 137030.              | 6.6 | 7         |
| 6  | Effect of microwave assisted solvothermal process parameters on carbon dioxide adsorption properties of microporous carbon materials. Microporous and Mesoporous Materials, 2021, 314, 110829. | 2.2 | 8         |
| 7  | Magnetic Study of ZnMnOâ, <i>f</i> in ZnO/MnO Nanocomposites. IEEE Transactions on Magnetics, 2021, 57, 1-12.                                                                                  | 1.2 | 1         |
| 8  | Influence of the calcination of TiO2-reduced graphite hybrid for the photocatalytic reduction of carbon dioxide. Catalysis Today, 2021, 380, 32-40.                                            | 2.2 | 17        |
| 9  | Magnetic moment centers in titanium dioxide photocatalysts loaded on reduced graphene oxide flakes. Reviews on Advanced Materials Science, 2021, 60, 57-63.                                    | 1.4 | 6         |
| 10 | DC magnetization of titania supported on reduced graphene oxide flakes. Reviews on Advanced<br>Materials Science, 2021, 60, 794-800.                                                           | 1.4 | 1         |
| 11 | ZnO/Carbon Spheres with Excellent Regenerability for Post-Combustion CO2 Capture. Materials, 2021, 14, 6478.                                                                                   | 1.3 | 11        |
| 12 | Changes in Porous Parameters of the Ion Exchanged X Zeolite and Their Effect on CO2 Adsorption.<br>Molecules, 2021, 26, 7520.                                                                  | 1.7 | 3         |
| 13 | Effective processes of phenol degradation on Fe3O4–TiO2 nanostructured magnetic photocatalyst.<br>Journal of Physics and Chemistry of Solids, 2020, 136, 109178.                               | 1.9 | 35        |
| 14 | Pressureless and Low-Pressure Synthesis of Microporous Carbon Spheres Applied to CO2 Adsorption.<br>Molecules, 2020, 25, 5328.                                                                 | 1.7 | 11        |
| 15 | Magnetic and electrical properties of carbon nanotube/epoxy composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 254, 114507.                 | 1.7 | 10        |
| 16 | Nanocomposite Titania–Carbon Spheres as CO <sub>2</sub> and CH <sub>4</sub> Sorbents. ACS Omega, 2020, 5, 1966-1973.                                                                           | 1.6 | 7         |
| 17 | Structural and optical properties of ZnO–Al2O3 nanopowders prepared by chemical methods. Journal of Luminescence, 2020, 224, 117273.                                                           | 1.5 | 9         |
| 18 | Carbon Spheres as CO2 Sorbents. Applied Sciences (Switzerland), 2019, 9, 3349.                                                                                                                 | 1.3 | 26        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Preparation and characterisation of carbon spheres for carbon dioxide capture. Journal of Porous<br>Materials, 2019, 26, 19-27.                                                                            | 1.3 | 19        |
| 20 | Adsorptive removal of cationic dye from aqueous solutions by ZnO/ZnMn <sub>2</sub> O <sub>4</sub><br>nanocomposite. Separation Science and Technology, 2018, 53, 1295-1306.                                | 1.3 | 14        |
| 21 | Surface characteristics of KOH-treated commercial carbons applied for CO <sub>2</sub> adsorption.<br>Adsorption Science and Technology, 2018, 36, 478-492.                                                 | 1.5 | 37        |
| 22 | Superparamagnetic and ferrimagnetic behavior of nanocrystalline ZnO(MnO). Physica E:<br>Low-Dimensional Systems and Nanostructures, 2018, 98, 10-16.                                                       | 1.3 | 4         |
| 23 | Magnetometric Study Of ZnO/CoO Nanocomposites. Reviews on Advanced Materials Science, 2018, 57, 11-25.                                                                                                     | 1.4 | 3         |
| 24 | Magnetic study of Fe <sub>3</sub> O <sub>4</sub> /Ag nanoparticles. EPJ Applied Physics, 2018, 83, 10402.                                                                                                  | 0.3 | 2         |
| 25 | Microporous carbon spheres modified with EDA used as carbon dioxide sorbents. Advanced Materials<br>Letters, 2018, 9, 432-435.                                                                             | 0.3 | 4         |
| 26 | Highly microporous activated carbons from biomass for CO 2 capture and effective micropores at different conditions. Journal of CO2 Utilization, 2017, 18, 73-79.                                          | 3.3 | 265       |
| 27 | Terbium content affects the luminescence properties of ZrO 2 :Tb nanoparticles for mammary cancer imaging in mice. Optical Materials, 2017, 74, 16-26.                                                     | 1.7 | 16        |
| 28 | Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New Journal of<br>Chemistry, 2017, 41, 1549-1557.                                                                        | 1.4 | 37        |
| 29 | Adsorption of carbon dioxide on TEPA-modified TiO <sub>2</sub> /titanate composite nanorods. New<br>Journal of Chemistry, 2017, 41, 7870-7885.                                                             | 1.4 | 16        |
| 30 | Fluorination of Carbon Nanotubes â^' A Review. Journal of Fluorine Chemistry, 2017, 200, 179-189.                                                                                                          | 0.9 | 65        |
| 31 | Impact of multiwall carbon nanotubes on the fatigue strength of adhesive joints. International<br>Journal of Adhesion and Adhesives, 2017, 73, 16-21.                                                      | 1.4 | 34        |
| 32 | Improvement of CO 2 uptake of activated carbons by treatment with mineral acids. Chemical Engineering Journal, 2017, 309, 159-171.                                                                         | 6.6 | 53        |
| 33 | Impact on CO2 Uptake of MWCNT after Acid Treatment Study. Journal of Nanomaterials, 2017, 2017, 1-11.                                                                                                      | 1.5 | 13        |
| 34 | Effect of Synthesis Parameters of Graphene/Fe <sub>2</sub> O <sub>3</sub> Nanocomposites on Their<br>Structural and Electrical Conductivity Properties. Acta Physica Polonica A, 2017, 132, 1424-1429.     | 0.2 | 4         |
| 35 | Removal of Rhodamine B from aqueous solution by ZnFe <sub>2</sub> O <sub>4</sub> nanocomposite with magnetic separation performance. Polish Journal of Chemical Technology, 2017, 19, 65-74.               | 0.3 | 20        |
| 36 | Adsorption of Acid Red 88 Anionic Dye from Aqueous Solution onto ZnO/ZnMn2O4 Nanocomposite:<br>Equilibrium, Kinetics, and Thermodynamics. Polish Journal of Environmental Studies, 2017, 26,<br>2585-2593. | 0.6 | 10        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis and antibacterial properties of Fe <sub>3</sub> O <sub>4</sub> -Ag nanostructures. Polish<br>Journal of Chemical Technology, 2016, 18, 110-116.                                        | 0.3 | 19        |
| 38 | TiO 2 /titanate composite nanorod obtained from various alkali solutions as CO 2 sorbents from exhaust gases. Microporous and Mesoporous Materials, 2016, 231, 117-127.                          | 2.2 | 17        |
| 39 | Magnetic studies of 0.7(Fe2O3)/0.3(ZnO) nanocomposites in nanopowder form and dispersed in polymer matrix. Materials Science-Poland, 2016, 34, 286-296.                                          | 0.4 | 4         |
| 40 | Raman study of surface optical phonons in hydrothermally obtained ZnO(Mn) nanoparticles. Optical<br>Materials, 2016, 58, 317-322.                                                                | 1.7 | 14        |
| 41 | Laser power influence on Raman spectra of ZnO(Co) nanoparticles. Journal of Physics and Chemistry of Solids, 2016, 91, 80-85.                                                                    | 1.9 | 12        |
| 42 | Preparation of Activated Carbon from Beet Molasses and TiO <sub>2</sub> as the Adsorption of CO <sub>2</sub> . Acta Physica Polonica A, 2016, 129, 158-161.                                      | 0.2 | 16        |
| 43 | Modification of Commercial Activated Carbons for CO <sub>2</sub> Adsorption. Acta Physica Polonica A, 2016, 129, 394-401.                                                                        | 0.2 | 43        |
| 44 | Activated Carbons from Molasses as CO <sub>2</sub> Sorbents. Acta Physica Polonica A, 2016, 129, 402-404.                                                                                        | 0.2 | 29        |
| 45 | Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. Journal of Chemical & Engineering Data, 2015, 60, 3148-3158.                      | 1.0 | 99        |
| 46 | Influence of SOP modes on Raman spectra of ZnO(Fe) nanoparticles. Optical Materials, 2015, 42, 118-123.                                                                                          | 1.7 | 10        |
| 47 | Magnetic Properties of Fe2O3/ZnO Nanocomposites. NATO Science for Peace and Security Series C:<br>Environmental Security, 2015, , 93-109.                                                        | 0.1 | Ο         |
| 48 | Preparation and characterization of multi-walled carbon nanotubes grown on transition metal catalysts. Polish Journal of Chemical Technology, 2014, 16, 117-122.                                 | 0.3 | 19        |
| 49 | High Pressure Synthesis versus Calcination – Different Approaches to Crystallization of Zirconium<br>Dioxide. Polish Journal of Chemical Technology, 2014, 16, 99-105.                           | 0.3 | 11        |
| 50 | FMR and Magnetization Study of ZnFe <sub>2</sub> 0 <sub>4</sub> Nanoparticles<br>in 0.40Fe <sub>2</sub> 0 <sub>3</sub> /0.60ZnO Nanocomposite. IEEE Transactions<br>on Magnetics, 2014, 50, 1-6. | 1.2 | 3         |
| 51 | Magnetic study of 0.20(Fe2O3)/0.80(ZnO) nanocomposite. Journal of Magnetism and Magnetic<br>Materials, 2014, 361, 12-18.                                                                         | 1.0 | 7         |
| 52 | Raman study of surface optical phonons in ZnO(Mn) nanoparticles. Journal of Alloys and Compounds, 2014, 585, 214-219.                                                                            | 2.8 | 35        |
| 53 | Removal of metal particles from carbon nanotubes using conventional and microwave methods.<br>Separation and Purification Technology, 2014, 136, 105-110.                                        | 3.9 | 13        |
| 54 | Studies on the Kinetics of Carbon Deposit Formation on Nanocrystalline Iron Stabilized with Structural Promoters. Journal of Physical Chemistry C, 2014, 118, 15434-15439.                       | 1.5 | 15        |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Magnetic resonance study of nanocrystalline 0.10MnO/0.90ZnO. Open Physics, 2013, 11, .                                                                                             | 0.8 | 1         |
| 56 | Magnetic properties of ZnO(Co) nanocrystals. Journal of Alloys and Compounds, 2013, 561, 247-251.                                                                                  | 2.8 | 11        |
| 57 | Synthesis of nanocrystalline nickel and iron carbides by decomposition of hydrocarbons. Materials Science-Poland, 2013, 31, 65-70.                                                 | 0.4 | 1         |
| 58 | Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. Journal of Colloid and Interface Science, 2013, 398, 152-160. | 5.0 | 217       |
| 59 | FMR study of 0.30(Fe <sub>2</sub> O <sub>3</sub> )/0.70(ZnO) nanocomposite. EPJ Applied Physics, 2013, 62, 10402.                                                                  | 0.3 | 6         |
| 60 | Magnetic study of nanocrystalline 0.95MnO/0.05ZnO. Journal of Magnetism and Magnetic Materials, 2013, 326, 225-231.                                                                | 1.0 | 4         |
| 61 | Impact of yttria stabilization on Tb <sup>3+</sup> intra-shell luminescence efficiency in zirconium dioxide nanopowders. Journal of Physics Condensed Matter, 2013, 25, 194106.    | 0.7 | 13        |
| 62 | Chlorination of Carbon Nanotubes Obtained on the Different Metal Catalysts. Journal of<br>Nanomaterials, 2013, 2013, 1-9.                                                          | 1.5 | 17        |
| 63 | Cobalt-based Catalysts for Ammonia Decomposition. Materials, 2013, 6, 2400-2409.                                                                                                   | 1.3 | 63        |
| 64 | Transition metals in ZnO nanocrystals: Magnetic and structural properties. Science of Sintering, 2013, 45, 31-48.                                                                  | 0.5 | 15        |
| 65 | Removal of SO <sub>2</sub> from gases on carbon materials. Polish Journal of Chemical Technology, 2012, 14, 41-45.                                                                 | 0.3 | 3         |
| 66 | Microwave-Assisted Acid Digestion Method for Purification of Carbon Nanotubes. Fullerenes<br>Nanotubes and Carbon Nanostructures, 2012, 20, 439-443.                               | 1.0 | 4         |
| 67 | Magnetic resonance study of carbon encapsulated Ni nanoparticles. Open Chemistry, 2012, 10, 1963-1968.                                                                             | 1.0 | 0         |
| 68 | Simultaneous purification and functionalization of carbon nanotubes using chlorination. Journal of<br>Materials Research, 2012, 27, 2368-2374.                                     | 1.2 | 24        |
| 69 | Magnetic properties of ZnFe2O4 ferrite nanoparticles embedded in ZnO matrix. Applied Physics Letters, 2012, 100, .                                                                 | 1.5 | 13        |
| 70 | Nucleation in a gasâ $\in$ solid state reaction. Crystal Research and Technology, 2012, 47, 1164-1171.                                                                             | 0.6 | 1         |
| 71 | Surface optical phonons in ZnO(Co) nanoparticles: Raman study. Journal of Alloys and Compounds, 2012, 540, 49-56.                                                                  | 2.8 | 22        |
| 72 | Magnetic properties of ZnFe2O4 nanoparticles. Open Physics, 2012, 10, .                                                                                                            | 0.8 | 7         |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Functionalization of gold-coated carbon nanotubes with self-assembled monolayers of thiolates.<br>Journal of Materials Science, 2012, 47, 3463-3467.                                           | 1.7 | 6         |
| 74 | Dynamic magnetic properties of ZnO nanocrystals incorporating Fe. Journal of Alloys and Compounds, 2011, 509, 3756-3759.                                                                       | 2.8 | 18        |
| 75 | Comparison Studies between Hydrogenation and Oxidation of MWNTs Followed by Acid Treatment.<br>Journal of Nanoscience and Nanotechnology, 2011, 11, 7926-7930.                                 | 0.9 | 2         |
| 76 | Nanocrystalline ZnO Doped with Fe2O3- Magnetic and Structural Properties. Acta Physica Polonica A, 2011, 119, 689-691.                                                                         | 0.2 | 5         |
| 77 | FMR Study of Temperature Dependence of Magnetic Properties of Nanocrystalline 0.90(Fe2O3)/0.10ZnO.<br>Acta Physica Polonica A, 2011, 120, 1070-1073.                                           | 0.2 | 4         |
| 78 | Magnetic Resonance Study of MnO/ZnO Nanopowders. Acta Physica Polonica A, 2011, 120, 1074-1079.                                                                                                | 0.2 | 3         |
| 79 | Photoluminescence and Chromaticity Properties of ZnO Nanopowders Made by a Microwave<br>Hydrothermal Method. Acta Physica Polonica A, 2011, 120, 908-910.                                      | 0.2 | 4         |
| 80 | Magnetic properties of nanocrystalline ZnO doped with MnO and CoO. Journal of Physics: Conference<br>Series, 2010, 200, 072058.                                                                | 0.3 | 7         |
| 81 | Copper removal by carbon nanomaterials bearing cyclam-functionalized silica. Open Chemistry, 2010, 8,<br>341-346.                                                                              | 1.0 | 6         |
| 82 | Effect of Cobalt on the Activity of CuO/CeO2 Catalyst for the Selective Oxidation of CO. Catalysis<br>Letters, 2010, 134, 196-203.                                                             | 1.4 | 19        |
| 83 | Preparation and characterization of magnetic carbon nanomaterials bearing APTS–silica on their surface. Journal of Materials Science, 2010, 45, 1100-1106.                                     | 1.7 | 12        |
| 84 | Magnetic study of Fe2O3/ZnO nanocomposites. Physica B: Condensed Matter, 2010, 405, 4054-4058.                                                                                                 | 1.3 | 17        |
| 85 | Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon<br>nanomaterials. Applied Catalysis A: General, 2010, 384, 27-35.                                | 2.2 | 70        |
| 86 | Synthesis of carbon-encapsulated nickel nanoparticles. Applied Surface Science, 2010, 256, 5249-5253.                                                                                          | 3.1 | 15        |
| 87 | ZnFe2O4/ZnO nanoparticles obtained by coprecipitation route, XPS and TEM study. Physica Status<br>Solidi C: Current Topics in Solid State Physics, 2010, 7, 1420-1423.                         | 0.8 | 16        |
| 88 | Adsorption of metal ions on magnetic carbon nanomaterials bearing chitosan-functionalized silica.<br>International Journal of Materials Research, 2010, 101, 1543-1547.                        | 0.1 | 6         |
| 89 | In situ synthesis, morphology and magnetic properties of poly(ether–ester) multiblock<br>copolymer/carbon-covered nickel nanosystems. Journal of Non-Crystalline Solids, 2010, 356, 1893-1901. | 1.5 | 9         |
| 90 | Raman scattering from ZnO incorporating Fe nanoparticles: Vibrational modes and low-frequency acoustic modes. Journal of Alloys and Compounds, 2010, 507, 386-390.                             | 2.8 | 34        |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Studies of hydrogen interaction with carbon deposit containing carbon nanotubes. Journal of Non-Crystalline Solids, 2009, 355, 1370-1375.                                          | 1.5 | 6         |
| 92  | Carbon covered magnetic nickel nanoparticles embedded in PBT-PTMO polymer: Preparation and magnetic properties. Journal of Non-Crystalline Solids, 2009, 355, 1400-1404.           | 1.5 | 7         |
| 93  | The preparation and EPR study of nanocrystalline ZnFe <sub>2</sub> O <sub>4</sub> . Journal of Physics: Conference Series, 2009, 146, 012014.                                      | 0.3 | 14        |
| 94  | Low-Frequency Raman Scattering from ZnO(Fe) Nanoparticles. Acta Physica Polonica A, 2009, 116, 65-67.                                                                              | 0.2 | 4         |
| 95  | Synthesis and Characterization of ZnO Doped with Fe <sub>2</sub> O <sub>3</sub> - Hydrothermal Synthesis and Calcination Process. Acta Physica Polonica A, 2009, 116, S-133-S-135. | 0.2 | 16        |
| 96  | Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chemical Papers, 2008, 62, .                                   | 1.0 | 28        |
| 97  | Magnetic properties of the micro-silica/cement matrix with carbon-coated cobalt nanoparticles and free radical DPPH. Journal of Non-Crystalline Solids, 2008, 354, 4510-4514.      | 1.5 | 10        |
| 98  | Study of mechanical properties of concrete with low concentration of magnetic nanoparticles.<br>Journal of Non-Crystalline Solids, 2008, 354, 4515-4518.                           | 1.5 | 23        |
| 99  | Synthesis by Wet Chemical Method and Characterization of Nanocrystalline ZnO Doped with Fe <sub>2</sub> O <sub>3</sub> . Acta Physica Polonica A, 2008, 113, 1695-1700.            | 0.2 | 20        |
| 100 | Raman Scattering from ZnO(Fe) Nanoparticles. Acta Physica Polonica A, 2008, 114, 1323-1328.                                                                                        | 0.2 | 38        |
| 101 | FMR Study of Carbon Coated Cobalt Nanoparticles Dispersed in a Paraffin Matrix. Solid State Phenomena, 2007, 128, 193-198.                                                         | 0.3 | 3         |
| 102 | Preparation of nanocrystalline iron–carbon materials as fillers for polymers. Nanotechnology, 2007,<br>18, 405601.                                                                 | 1.3 | 7         |
| 103 | Utilization of spent iron catalyst for ammonia synthesis. Polish Journal of Chemical Technology, 2007,<br>9, 108-113.                                                              | 0.3 | 1         |
| 104 | Catalytic Decomposition of Ethylene on Nanocrystalline Cobalt. Solid State Phenomena, 2007, 128, 249-254.                                                                          | 0.3 | 1         |
| 105 | Poisoning of iron catalyst by sulfur. Catalysis Today, 2007, 124, 43-48.                                                                                                           | 2.2 | 35        |
| 106 | Carbon-coated cobalt nanoparticles. Materials Science and Engineering C, 2007, 27, 1273-1276.                                                                                      | 3.8 | 13        |
| 107 | Metallic Nano-Materials and Nanostructures: Development of Technology Roadmap. Solid State<br>Phenomena, 2006, 114, 345-0.                                                         | 0.3 | 6         |
| 108 | On the cleaning of monocrystalline metallic samples from impurities. Applied Surface Science, 2005, 252, 98-103.                                                                   | 3.1 | 4         |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Thermal diffusion of potassium on the modified iron surface. Applied Surface Science, 2005, 252, 833-838.                                                                                  | 3.1 | 1         |
| 110 | Ferromagnetic resonance and ac conductivity of a polymer composite of Fe3O4 and Fe3C nanoparticles dispersed in a graphite matrix. Journal of Applied Physics, 2005, 97, 024304.           | 1.1 | 57        |
| 111 | Synthesis of Nanocarbon Materials by Carburization of Nanocrystalline Iron. Materials Research<br>Society Symposia Proceedings, 2005, 879, 1.                                              | 0.1 | 0         |
| 112 | Nucleation of the Fe3C in reaction of methane with nanocrystalline iron. Journal of Materials Research, 2005, 20, 386-393.                                                                 | 1.2 | 7         |
| 113 | Kinetics of Carbon Deposit Formation by Methane Decomposition on Nanocrystalline Iron Carbide.<br>Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 99-105.                        | 1.0 | 9         |
| 114 | Temperature dependence of FMR spectrum of Fe3C magnetic agglomerates. Journal of Physics:<br>Conference Series, 2005, 10, 151-154.                                                         | 0.3 | 9         |
| 115 | Low Concentration Effect of Fe3O4and Fe3C Magnetic Nanoparticles in Non-Magnetic Matrix on the FMR Spectra. Acta Physica Polonica A, 2005, 108, 297-302.                                   | 0.2 | 4         |
| 116 | XRD, TEM and magnetic resonance studies of iron carbide nanoparticle agglomerates in a carbon matrix. Carbon, 2004, 42, 1127-1132.                                                         | 5.4 | 43        |
| 117 | Electron-induced ammonia adsorption on iron. Journal of Electron Spectroscopy and Related Phenomena, 2003, 128, 215-221.                                                                   | 0.8 | 2         |
| 118 | Preparation of Nanocrystalline Iron Carbide by Reaction of Iron with Methane. Solid State<br>Phenomena, 2003, 94, 181-184.                                                                 | 0.3 | 8         |
| 119 | The Size Distribution of Iron Nanoparticles Produced by the Carburisation Process. Solid State Phenomena, 2003, 94, 177-180.                                                               | 0.3 | 3         |
| 120 | The surface analysis method bridging the pressure gap. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 208, 277-281.                                               | 2.3 | 0         |
| 121 | A new method for in situ determination of number of active sites in iron catalysts for ammonia synthesis and decomposition. Applied Surface Science, 2002, 196, 423-428.                   | 3.1 | 21        |
| 122 | Sulfur Poisoning of Iron Ammonia Catalyst Probed by Potassium Desorption. Reaction Kinetics and Catalysis Letters, 2001, 74, 143-149.                                                      | 0.6 | 32        |
| 123 | New method of the surface characterisation of a metal catalyst under real reaction conditions using electron spectroscopy. Studies in Surface Science and Catalysis, 2000, 130, 3113-3118. | 1.5 | 1         |
| 124 | Oxidation of the Fe(111) surface covered with carbon or nitrogen. Surface Science, 2000, 454-456, 227-233.                                                                                 | 0.8 | 4         |
| 125 | The comparison of the different adsorption states of non-metals on the iron surface. Vacuum, 1999, 54, 3-7.                                                                                | 1.6 | 10        |
| 126 | Influence of potassium/oxygen layer on properties of iron surfaces. Applied Catalysis A: General, 1999, 182, 379-384.                                                                      | 2.2 | 15        |

8

| #   | Article                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Double-Layer Model of the Fused Iron Catalyst for Ammonia Synthesisâ€. Langmuir, 1999, 15, 5785-5789.                                                         | 1.6 | 50        |
| 128 | Mechanism of the Initial Stage of the Oxidation of the Clean and Precovered with Nonmetals Iron<br>Surfaceâ€. Langmuir, 1999, 15, 5790-5794.                  | 1.6 | 7         |
| 129 | Effect of the real iron crystal structure on the segregation of sulphur. Applied Surface Science, 1998, 134, 63-68.                                           | 3.1 | 5         |
| 130 | The effect of the real crystal structure of iron on the behaviour of surface contaminants. Surface Science, 1998, 402-404, 502-507.                           | 0.8 | 3         |
| 131 | Kinetics of the oxidation of the iron surface covered with potassium — geometrical aspect. Surface<br>Science, 1997, 377-379, 578-582.                        | 0.8 | 4         |
| 132 | Growth of iron oxides on the Fe(111) surface precovered with sulphur and/or potassium. Applied Surface Science, 1997, 108, 379-384.                           | 3.1 | 9         |
| 133 | The effect of the real structure of monocrystalline sample on the segregation of carbon in iron.<br>Vacuum, 1997, 48, 347-350.                                | 1.6 | 6         |
| 134 | Segregation of carbon in iron and molybdenum. Surface Science, 1996, 352-354, 223-227.                                                                        | 0.8 | 10        |
| 135 | Chlorine as a poison of the fused iron catalyst for ammonia synthesis. Applied Catalysis A: General, 1996, 134, 331-338.                                      | 2.2 | 8         |
| 136 | Effect of the iron catalyst mechanical treatment on the activity in ammonia synthesis reaction.<br>Studies in Surface Science and Catalysis, 1995, , 677-682. | 1.5 | 0         |
| 137 | Model of active surface of iron catalyst for ammonia synthesis. Vacuum, 1994, 45, 267-269.                                                                    | 1.6 | 28        |
| 138 | Oxidation of iron surface covered with sulphur and/or potassium. Applied Surface Science, 1993, 72, 45-48.                                                    | 3.1 | 21        |
| 139 | Interpretation of kinetics of iron surface oxidation involving the real structure of single crystal samples. European Physical Journal D, 1993, 43, 869-873.  | 0.4 | 8         |
| 140 | Temperature Dependence of the FMR Spectra of Polymer Composites with Nanocrystalline α-Fe/C Filler.<br>Solid State Phenomena, 0, 128, 213-218.                | 0.3 | 3         |
| 141 | Increase the Microporosity and CO <sub>2</sub> Adsorption of a Commercial Activated Carbon. Applied Mechanics and Materials, 0, 749, 17-21.                   | 0.2 | 4         |
| 142 | The Increase of the Micoporosity and CO2 Adsorption Capacity of the Commercial Activated Carbon CWZ-22 by KOH Treatment. , 0, , .                             |     | 8         |
| 143 | Metallic Nano-Materials and Nanostructures: Development of Technology Roadmap. Solid State<br>Phenomena, 0, , 345-0.                                          | 0.3 | 1         |