List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8350677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-Omics Analysis of Multiple Glucose-Sensing Receptor Systems in Yeast. Biomolecules, 2022, 12, 175.	1.8	9
2	A predictive model of gene expression reveals the role of network motifs in the mating response of yeast. Science Signaling, 2021, 14, .	1.6	2
3	A universal allosteric mechanism for G protein activation. Molecular Cell, 2021, 81, 1384-1396.e6.	4.5	33
4	Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1. PLoS Genetics, 2021, 17, e1009640.	1.5	13
5	Gradient Tracking by Yeast GPCRs in a Microfluidics Chamber. Methods in Molecular Biology, 2021, 2268, 275-287.	0.4	3
6	Potassium starvation induces autophagy in yeast. Journal of Biological Chemistry, 2020, 295, 14189-14202.	1.6	8
7	Systematic analysis of F-box proteins reveals a new branch of the yeast mating pathway. Journal of Biological Chemistry, 2019, 294, 14717-14731.	1.6	8
8	Quantitative analysis of the yeast pheromone pathway. Yeast, 2019, 36, 495-518.	0.8	18
9	Regulation of large and small G proteins by ubiquitination. Journal of Biological Chemistry, 2019, 294, 18613-18623.	1.6	28
10	Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast. Journal of Biological Chemistry, 2018, 293, 2318-2329.	1.6	28
11	Amino acid metabolites that regulate G protein signaling during osmotic stress. PLoS Genetics, 2017, 13, e1006829.	1.5	16
12	Thematic Minireview Series: Complexities of Cellular Signaling Revealed by Simple Model Organisms. Journal of Biological Chemistry, 2016, 291, 7786-7787.	1.6	4
13	Regulation of Ras Paralog Thermostability by Networks of Buried Ionizable Groups. Biochemistry, 2016, 55, 534-542.	1.2	10
14	MAPK feedback encodes a switch and timer for tunable stress adaptation in yeast. Science Signaling, 2015, 8, ra5.	1.6	46
15	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	5.8	282
16	RGS Proteins and Septins Cooperate to Promote Chemotropism by Regulating Polar Cap Mobility. Current Biology, 2015, 25, 275-285.	1.8	39
17	Thematic Minireview Series: New Directions in G Protein-coupled Receptor Pharmacology. Journal of Biological Chemistry, 2015, 290, 19469-19470.	1.6	23
18	Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5702-5707.	3.3	38

#	Article	IF	CITATIONS
19	Thematic Minireview Series: Cell Biology of G Protein Signaling. Journal of Biological Chemistry, 2015, 290, 6679-6680.	1.6	6
20	Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK. Molecular Biology of the Cell, 2015, 26, 3359-3371.	0.9	21
21	Modulation of receptor dynamics by the regulator of G protein signaling Sst2. Molecular Biology of the Cell, 2015, 26, 4124-4134.	0.9	12
22	Systematic Analysis of Yeast Fâ€box Proteins Reveals a New Role of Ubiquitination in Polarity Establishment. FASEB Journal, 2015, 29, 618.17.	0.2	0
23	Guanine Nucleotide-binding Protein (Gα) Endocytosis by a Cascade of Ubiquitin Binding Domain Proteins Is Required for Sustained Morphogenesis and Proper Mating in Yeast. Journal of Biological Chemistry, 2014, 289, 15052-15063.	1.6	10
24	Cellular Noise Suppression by the Regulator of G Protein Signaling Sst2. Molecular Cell, 2014, 55, 85-96.	4.5	32
25	Protons as Second Messenger Regulators of G Protein Signaling. Molecular Cell, 2013, 51, 531-538.	4.5	70
26	Differences in the Regulation of K-Ras and H-Ras Isoforms by Monoubiquitination. Journal of Biological Chemistry, 2013, 288, 36856-36862.	1.6	65
27	Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nature Structural and Molecular Biology, 2013, 20, 46-52.	3.6	80
28	Proper Protein Glycosylation Promotes Mitogen-Activated Protein Kinase Signal Fidelity. Biochemistry, 2013, 52, 115-124.	1.2	9
29	Regulation of Yeast G Protein Signaling by the Kinases That Activate the AMPK Homolog Snf1. Science Signaling, 2013, 6, ra78.	1.6	34
30	Dynamic Ubiquitination of the Mitogen-activated Protein Kinase Kinase (MAPKK) Ste7 Determines Mitogen-activated Protein Kinase (MAPK) Specificity. Journal of Biological Chemistry, 2013, 288, 18660-18671.	1.6	16
31	Ras Activity Regulation by Monoubiquitination. FASEB Journal, 2013, 27, 1046.3.	0.2	0
32	Protons as second messenger regulators of cell signaling. FASEB Journal, 2013, 27, 598.10.	0.2	0
33	Checkpoints in a Yeast Differentiation Pathway Coordinate Signaling during Hyperosmotic Stress. PLoS Genetics, 2012, 8, e1002437.	1.5	50
34	Combined computational and experimental analysis reveals mitogen-activated protein kinase–mediated feedback phosphorylation as a mechanism for signaling specificity. Molecular Biology of the Cell, 2012, 23, 3899-3910.	0.9	17
35	Differences in intradomain and interdomain motion confer distinct activation properties to structurally similar G1± proteins. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7275-7279.	3.3	54
36	Signal Activation and Inactivation by the Gα Helical Domain: A Long-Neglected Partner in G Protein Signaling. Science Signaling, 2012, 5, re2.	1.6	21

#	Article	IF	CITATIONS
37	Defining MAP3 kinases required for MDA-MB-231 cell tumor growth and metastasis. Oncogene, 2012, 31, 3889-3900.	2.6	80
38	Pheromone- and RSP5-dependent Ubiquitination of the G Protein Î ² Subunit Ste4 in Yeast. Journal of Biological Chemistry, 2011, 286, 27147-27155.	1.6	15
39	The Crystal Structure of a Self-Activating G Protein α Subunit Reveals Its Distinct Mechanism of Signal Initiation. Science Signaling, 2011, 4, ra8.	1.6	115
40	Yeast Dynamically Modify Their Environment to Achieve Better Mating Efficiency. Science Signaling, 2011, 4, ra54.	1.6	48
41	Cell Cycle-dependent Phosphorylation and Ubiquitination of a G Protein α Subunit. Journal of Biological Chemistry, 2011, 286, 20208-20216.	1.6	23
42	Selective Regulation of MAP Kinase Signaling by an Endomembrane Phosphatidylinositol 4-Kinase. Journal of Biological Chemistry, 2011, 286, 14852-14860.	1.6	14
43	Functional Reconstitution of an Atypical G Protein Heterotrimer and Regulator of G Protein Signaling Protein (RGS1) from Arabidopsis thaliana. Journal of Biological Chemistry, 2011, 286, 13143-13150.	1.6	58
44	Structures of Get3, Get4, and Get5 Provide New Models for TA Membrane Protein Targeting. Structure, 2010, 18, 897-902.	1.6	34
45	Systematic Analysis of Essential Genes Reveals Important Regulators of G Protein Signaling. Molecular Cell, 2010, 38, 746-757.	4.5	29
46	Cells Prioritize Responses When Faced With a Decision Between an Environmental Stress and a Developmental Cue. FASEB Journal, 2010, 24, lb171.	0.2	0
47	Pheromone―and Rsp5â€Dependent Ubiquitinaton of G Beta Subunit Ste4 in Yeast. FASEB Journal, 2010, 24, lb212.	0.2	0
48	Systematic analysis of essential genes reveals new regulators of G protein signaling. FASEB Journal, 2010, 24, lb167.	0.2	0
49	G Protein Mono-ubiquitination by the Rsp5 Ubiquitin Ligase. Journal of Biological Chemistry, 2009, 284, 8940-8950.	1.6	25
50	Chapter 1 RGS Proteins. Progress in Molecular Biology and Translational Science, 2009, 86, 1-14.	0.9	10
51	Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway [,] . Biochemistry, 2009, 48, 6390-6401.	1.2	30
52	Coactivation of G Protein Signaling by Cell-Surface Receptors and an Intracellular Exchange Factor. Current Biology, 2008, 18, 211-215.	1.8	93
53	Regulation of Cell Signaling Dynamics by the Protein Kinase-Scaffold Ste5. Molecular Cell, 2008, 30, 649-656.	4.5	110
54	Control of MAPK Specificity by Feedback Phosphorylation of Shared Adaptor Protein Ste50. Journal of Biological Chemistry, 2008, 283, 33798-33802.	1.6	61

#	Article	IF	CITATIONS
55	A Scaffold Makes the Switch. Science Signaling, 2008, 1, pe46.	1.6	14
56	Dose-to-Duration Encoding and Signaling beyond Saturation in Intracellular Signaling Networks. PLoS Computational Biology, 2008, 4, e1000197.	1.5	56
57	Illuminating Gβ ₅ Signaling. Molecular Pharmacology, 2007, 72, 810-811.	1.0	3
58	Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16146-16151.	3.3	74
59	The RACK1 Ortholog Asc1 Functions as a G-protein \hat{I}^2 Subunit Coupled to Glucose Responsiveness in Yeast. Journal of Biological Chemistry, 2007, 282, 25168-25176.	1.6	96
60	Mathematical and Computational Analysis of Adaptation via Feedback Inhibition in Signal Transduction Pathways. Biophysical Journal, 2007, 93, 806-821.	0.2	107
61	Systems biology analysis of G protein and MAP kinase signaling in yeast. Oncogene, 2007, 26, 3254-3266.	2.6	35
62	A Systems-Biology Analysis of Feedback Inhibition in the Sho1 Osmotic-Stress-Response Pathway. Current Biology, 2007, 17, 659-667.	1.8	97
63	G Protein Signaling in Yeast: New Components, New Connections, New Compartments. Science, 2006, 314, 1412-1413.	6.0	49
64	Bistability, Stochasticity, and Oscillations in the Mitogen-Activated Protein Kinase Cascade. Biophysical Journal, 2006, 90, 1961-1978.	0.2	73
65	Activation of the Phosphatidylinositol 3-Kinase Vps34 by a G Protein α Subunit at the Endosome. Cell, 2006, 126, 191-203.	13.5	202
66	DEP-Domain-Mediated Regulation of GPCR Signaling Responses. Cell, 2006, 126, 1079-1093.	13.5	166
67	Pheromone Signaling Pathways in Yeast. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, cm6-cm6.	4.1	54
68	Regulation of G Protein and Mitogen-Activated Protein Kinase Signaling by Ubiquitination. Circulation Research, 2006, 99, 1305-1314.	2.0	23
69	Pheromone-regulated Sumoylation of Transcription Factors That Mediate the Invasive to Mating Developmental Switch in Yeast. Journal of Biological Chemistry, 2006, 281, 1964-1969.	1.6	26
70	Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 330-346.	3.4	60
71	MAPK kinase kinases (MKKKs) as a target class for small-molecule inhibition to modulate signaling networks and gene expression. Current Opinion in Chemical Biology, 2005, 9, 325-331.	2.8	108
72	Differential Regulation of G Protein α Subunit Trafficking by Mono- and Polyubiquitination. Journal of Biological Chemistry, 2005, 280, 284-291.	1.6	34

#	Article	IF	CITATIONS
73	Mathematical Modeling of RGS and G-Protein Regulation in Yeast. Methods in Enzymology, 2004, 389, 383-398.	0.4	12
74	Persistent Activation by Constitutive Ste7 Promotes Kss1-Mediated Invasive Growth but Fails To Support Fus3-Dependent Mating in Yeast. Molecular and Cellular Biology, 2004, 24, 9221-9238.	1.1	51
75	Pheromone Signaling Mechanisms in Yeast: A Prototypical Sex Machine. Science, 2004, 306, 1508-1509.	6.0	97
76	Identification of Yeast Pheromone Pathway Modulators by High-Throughput Agonist Response Profiling of a Yeast Gene Knockout Strain Collection. Methods in Enzymology, 2004, 389, 399-409.	0.4	11
77	Dominant-negative Inhibition of Pheromone Receptor Signaling by a Single Point Mutation in the G Protein α Subunit. Journal of Biological Chemistry, 2004, 279, 35287-35297.	1.6	25
78	The Yeast G Protein α Subunit Gpa1 Transmits a Signal through an RNA Binding Effector Protein Scp160. Molecular Cell, 2003, 12, 517-524.	4.5	55
79	Identification of Allosteric Peptide Agonists of CXCR4. Journal of Biological Chemistry, 2003, 278, 896-907.	1.6	112
80	Regulation of Ste7 Ubiquitination by Ste11 Phosphorylation and the Skp1-Cullin-F-box Complex. Journal of Biological Chemistry, 2003, 278, 22284-22289.	1.6	40
81	RGS Proteins: G Protein-Coupled Receptors Meet Their Match. Assay and Drug Development Technologies, 2003, 1, 357-364.	0.6	24
82	Regulators of G Protein Signaling and Transient Activation of Signaling. Journal of Biological Chemistry, 2003, 278, 46506-46515.	1.6	66
83	Analysis of RGS Proteins in Saccharomyces cerevisiae. Methods in Enzymology, 2002, 344, 617-631.	0.4	73
84	Pheromone-dependent Ubiquitination of the Mitogen-activated Protein Kinase Kinase Ste7. Journal of Biological Chemistry, 2002, 277, 15766-15772.	1.6	41
85	G Proteins and Pheromone Signaling. Annual Review of Physiology, 2002, 64, 129-152.	5.6	118
86	Regulation of Stress Response Signaling by the N-terminal Dishevelled/EGL-10/Pleckstrin Domain of Sst2, a Regulator of G Protein Signaling in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 22156-22167.	1.6	40
87	Purification of RGS Protein, Sst2, from Saccharomyces cerevisiae and Escherichia coli. Methods in Enzymology, 2002, 344, 632-647.	0.4	2
88	Direct Identification of a G Protein Ubiquitination Site by Mass Spectrometryâ€. Biochemistry, 2002, 41, 5067-5074.	1.2	96
89	Desensitization: Diminishing returns. Nature, 2002, 418, 591-591.	13.7	13
90	Identification of Novel Pheromone-response Regulators through Systematic Overexpression of 120 Protein Kinases in Yeast. Journal of Biological Chemistry, 2001, 276, 26472-26478.	1.6	18

#	Article	lF	CITATIONS
91	Regulation of G Protein–Initiated Signal Transduction in Yeast: Paradigms and Principles. Annual Review of Biochemistry, 2001, 70, 703-754.	5.0	400
92	Use of G-protein fusions to monitor integral membrane protein–protein interactions in yeast. Nature Biotechnology, 2000, 18, 1075-1079.	9.4	67
93	Endoproteolytic Processing of Sst2, a Multidomain Regulator of G Protein Signaling in Yeast. Journal of Biological Chemistry, 2000, 275, 37533-37541.	1.6	43
94	Functional Analysis of Plp1 and Plp2, Two Homologues of Phosducin in Yeast. Journal of Biological Chemistry, 2000, 275, 18462-18469.	1.6	54
95	Cell Division Regulation by BIR1, a Member of the Inhibitor of Apoptosis Family in Yeast. Journal of Biological Chemistry, 2000, 275, 6707-6711.	1.6	76
96	Feedback Phosphorylation of an RGS Protein by MAP Kinase in Yeast. Journal of Biological Chemistry, 1999, 274, 36387-36391.	1.6	73
97	Sst2 Is a GTPase-Activating Protein for Gpa1:  Purification and Characterization of a Cognate RGSâ^'Gα Protein Pair in Yeast. Biochemistry, 1998, 37, 4815-4822.	1.2	116
98	Regulation of G protein signalling in yeast. Seminars in Cell and Developmental Biology, 1998, 9, 135-141.	2.3	46
99	Second Site Suppressor Mutations of a GTPase-deficient G-Protein α-Subunit. Journal of Biological Chemistry, 1998, 273, 28597-28602.	1.6	27
100	Selective Uncoupling of RGS Action by a Single Point Mutation in the G Protein α-Subunit. Journal of Biological Chemistry, 1998, 273, 5780-5784.	1.6	106
101	A Point Mutation in Gαo and Gαi1Blocks Interaction with Regulator of G Protein Signaling Proteins. Journal of Biological Chemistry, 1998, 273, 12794-12797.	1.6	152
102	RGS Proteins and Signaling by Heterotrimeric G Proteins. Journal of Biological Chemistry, 1997, 272, 3871-3874.	1.6	477
103	Regulators of G-Protein Signaling (RGS) Proteins: Region-Specific Expression of Nine Subtypes in Rat Brain. Journal of Neuroscience, 1997, 17, 8024-8037.	1.7	408
104	Partial Constitutive Activation of Pheromone Responses by a Palmitoylation-Site Mutant of a G Protein α Subunit in Yeastâ€. Biochemistry, 1996, 35, 14806-14817.	1.2	58
105	Identification of Triton X-100 Insoluble Membrane Domains in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271, 32975-32980.	1.6	92
106	Regulation of Membrane and Subunit Interactions by N-Myristoylation of a G Protein α Subunit in Yeast. Journal of Biological Chemistry, 1996, 271, 20273-20283.	1.6	81
107	Sst2, a Negative Regulator of Pheromone Signaling in the Yeast <i>Saccharomyces cerevisiae</i> : Expression, Localization, and Genetic Interaction and Physical Association with Gpa1 (the G-Protein α) Tj ETQq1	1 0.7 843	14 3gB T /Over
108	Inhibition of G-Protein Signaling by Dominant Gain-of-Function Mutations in Sst2p, a Pheromone Desensitization Factor in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1995, 15, 3635-3643.	1.1	196

HENRIK G DOHLMAN

#	Article	IF	CITATIONS
109	Hormone signal response system. Nature, 1993, 366, 307-308.	13.7	25
110	The a-factor transporter (STE6 gene product) and cell polarity in the yeast Saccharomyces cerevisiae Journal of Cell Biology, 1993, 120, 1203-1215.	2.3	104
111	Pheromone action regulates G-protein alpha-subunit myristoylation in the yeast Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9688-9692.	3.3	56
112	Model Systems for the Study of Seven-Transmembrane-Segment Receptors. Annual Review of Biochemistry, 1991, 60, 653-688.	5.0	1,351
113	Control of yeast mating signal transduction by a mammalian beta 2-adrenergic receptor and Gs alpha subunit. Science, 1990, 250, 121-123.	6.0	238
114	cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 46-50.	3.3	646
115	Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature, 1986, 321, 75-79.	13.7	1,284
116	Effect of pertussis toxin on α2 -adrenoceptors: decreased formation of the high-affinity state for agonists. FEBS Letters, 1984, 172, 95-98.	1.3	19