Ismael Diaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/835047/publications.pdf

Version: 2024-02-01

361296 345118 1,512 67 20 36 h-index citations g-index papers 67 67 67 1448 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Communication technology: Pros and cons of constant connection to work. Journal of Vocational Behavior, 2012, 80, 500-508.	1.9	199
2	Ionic liquids for post-combustion CO 2 capture by physical absorption: Thermodynamic, kinetic and process analysis. International Journal of Greenhouse Gas Control, 2017, 61, 61-70.	2.3	103
3	Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. One Earth, 2021, 4, 565-583.	3.6	87
4	Role of life-cycle externalities in the valuation of protic ionic liquids – a case study in biomass pretreatment solvents. Green Chemistry, 2020, 22, 3132-3140.	4.6	76
5	Enterprise Ionic Liquids Database (ILUAM) for Use in Aspen ONE Programs Suite with COSMO-Based Property Methods. Industrial & Engineering Chemistry Research, 2018, 57, 980-989.	1.8	71
6	Aspen Plus supported conceptual design of the aromatic–aliphatic separation from low aromatic content naphtha using 4-methyl-N-butylpyridinium tetrafluoroborate ionic liquid. Fuel Processing Technology, 2016, 146, 29-38.	3.7	67
7	lonic liquids as entrainers for the separation of aromatic–aliphatic hydrocarbon mixtures by extractive distillation. Chemical Engineering Research and Design, 2016, 115, 382-393.	2.7	62
8	Employee alienation: relationships with careerism and career satisfaction. Journal of Managerial Psychology, 2013, 28, 4-20.	1.3	55
9	On the behavior of imidazolium versus pyrrolidinium ionic liquids as extractants of phenolic compounds from water: Experimental and computational analysis. Separation and Purification Technology, 2018, 201, 214-222.	3.9	55
10	Overview of neoteric solvents as extractants in food industry: A focus on phenolic compounds separation from liquid streams. Food Research International, 2020, 136, 109558.	2.9	43
11	Hydrophobic eutectic solvents for extraction of natural phenolic antioxidants from winery wastewater. Separation and Purification Technology, 2021, 254, 117590.	3.9	41
12	Does Psychological Contract Breach Decrease Proactive Behaviors? The Moderating Effect of Emotion Regulation. Group and Organization Management, 2011, 36, 722-758.	2.7	39
13	Understanding childcare satisfaction and its effect on workplace outcomes: The convenience factor and the mediating role of workâ€family conflict. Journal of Occupational and Organizational Psychology, 2012, 85, 225-244.	2.6	38
14	Motivational active learning: An integrated approach to teaching and learning process control. Education for Chemical Engineers, 2018, 24, 7-12.	2.8	38
15	Industrial Methanol from Syngas: Kinetic Study and Process Simulation. International Journal of Chemical Reactor Engineering, 2013, 11, 469-477.	0.6	34
16	Job insecurity and job satisfaction. Career Development International, 2014, 19, 426-446.	1.3	31
17	SEBS triblock copolymer–solvent interaction parameters from inverse gas chromatography measurements. European Polymer Journal, 2009, 45, 590-594.	2.6	25
18	A systematic and integral hazards analysis technique applied to the process industry. Journal of Loss Prevention in the Process Industries, 2016, 43, 721-729.	1.7	24

#	Article	IF	CITATIONS
19	Polymer–solvent interaction parameters of SBS rubbers by inverse gas chromatography measurements. Fluid Phase Equilibria, 2011, 308, 107-113.	1.4	23
20	Green solvent screening using modeling and simulation. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100469.	3.2	21
21	Social and economic exchanges with the organization: do leader behaviors matter?. Leadership and Organization Development Journal, 2011, 32, 442-461.	1.6	20
22	Comparison between three predictive methods for the calculation of polymer solubility parameters. Fluid Phase Equilibria, 2013, 337, 6-10.	1.4	20
23	Enhancing aqueous systems fermentability using hydrophobic eutectic solvents as extractans of inhibitory compounds. Separation and Purification Technology, 2020, 250, 117184.	3.9	20
24	A control strategy for extractive and reactive dividing wall columns. Chemical Engineering and Processing: Process Intensification, 2017, 113, 14-19.	1.8	19
25	An integrated approach for sustainable valorization of winery wastewater using bio-based solvents for recovery of natural antioxidants. Journal of Cleaner Production, 2022, 334, 130181.	4.6	19
26	Sustainable Recovery of High Added-Value Vanilla Compounds from Wastewater Using Green Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 4850-4862.	3.2	18
27	A simple and reliable procedure to accurately estimate NRTL interaction parameters from liquid-liquid equilibrium data. Chemical Engineering Science, 2019, 193, 370-378.	1.9	17
28	Evaluation of bio-based solvents for phenolic acids extraction from aqueous matrices. Journal of Molecular Liquids, 2021, 338, 116930.	2.3	17
29	Hansen solubility parameter: from polyethylene and poly(vinyl acetate) homopolymers to ethylene–vinyl acetate copolymers. Polymer International, 2017, 66, 1013-1020.	1.6	16
30	Turbidimetric and intrinsic viscosity study of EVA copolymer–solvent systems. Polymer Bulletin, 2014, 71, 193-206.	1.7	15
31	Thermodynamic interactions of three SBS (styrene–butadiene–styrene) triblock copolymers with different solvents, by means of intrinsic viscosity measurements. European Polymer Journal, 2010, 46, 2261-2268.	2.6	14
32	Thermodynamic interactions of EVA copolymerâ€solvent systems by inverse gas chromatography measurements. Journal of Applied Polymer Science, 2013, 128, 481-486.	1.3	14
33	Reprint of: Motivational active learning: An integrated approach to teaching and learning process control. Education for Chemical Engineers, 2019, 26, 8-13.	2.8	14
34	Thermodynamic Modeling and Simulation of Styreneâ [°] Butadiene Rubbers (SBR) Solvent Equilibrium Staged Processes. Industrial & Engineering Chemistry Research, 2009, 48, 7713-7723.	1.8	12
35	Separation of low molecular weight alcohols from water with deep eutectic solvents: Liquid-liquid equilibria and process simulations. Fluid Phase Equilibria, 2021, 533, 112949.	1.4	12
36	Feasibility of 1,3-butanediol as solvent for limonene and linalool separation. Chemical Engineering and Processing: Process Intensification, 2010, 49, 1183-1187.	1.8	10

#	Article	IF	CITATIONS
37	It's Not Us, It's You: Why Isn't Research on Minority Workers Appearing in Our "Top-Tier―Journals?. Industrial and Organizational Psychology, 2013, 6, 70-75.	0.5	10
38	Assessment of bio-ionic liquids as promising solvents in industrial separation processes: Computational screening using COSMO-RS method. Fluid Phase Equilibria, 2022, 560, 113495.	1.4	10
39	Isobaric Vaporâ^'Liquid Equilibrium for the Binary Systems 1-Pentanol + Cyclohexane and 1-Pentanol + <i>n</i> + Hexane at Low Alcohol Compositions. Journal of Chemical & Description (1984-1987).	1.0	9
40	Purification process design in the production of styrene monomer. Chemical Engineering and Processing: Process Intensification, 2010, 49, 367-375.	1.8	9
41	Mutual Solubility of Aromatic Hydrocarbons in Pyrrolidinium and Ammonium-Based Ionic Liquids and Its Modeling Using the Cubic-Plus-Association (CPA) Equation of State. Journal of Chemical & Engineering Data, 2017, 62, 633-642.	1.0	9
42	Biomass pyrolysis kinetics through thermogravimetric analysis. Computer Aided Chemical Engineering, 2013, 32, 1-6.	0.3	7
43	System theory based hazard analysis applied to the process industry. International Journal of Reliability and Safety, 2016, 10, 72.	0.2	7
44	Selection of a minimum toxicity and high performance ionic liquid mixture for the separation of aromatic - aliphatic mixtures by extractive distillation. Computer Aided Chemical Engineering, 2017, 40, 2209-2214.	0.3	7
45	PC-SAFT thermodynamics of EVA copolymer – Solvent systems. Fluid Phase Equilibria, 2017, 449, 10-17.	1.4	6
46	Role of the cation on the liquid extraction of levulinic acid from water using NTf2-based ionic liquids: Experimental data and computational analysis. Journal of Molecular Liquids, 2020, 302, 112561.	2.3	6
47	A pathway to improve detoxification processes by selective extraction of phenols and sugars from aqueous media using sustainable solvents. Separation and Purification Technology, 2022, 299, 121675.	3.9	5
48	Model Based Engineering of Process Plants using SysML. Computer Aided Chemical Engineering, 2016, 38, 1281-1286.	0.3	4
49	COSMO-derived descriptors applied in ionic liquids physical property modelling using machine learning algorithms. Computer Aided Chemical Engineering, 2018, 43, 121-126.	0.3	4
50	Catching the Attention of Generation Z Chemical Engineering Students for Particle Technology. Journal of Formative Design in Learning, 2019, 3, 146-157.	0.7	4
51	Valorization of citrus waste through sustainable extraction processes. , 2020, , 113-133.		4
52	Bentonite as an Alternative Adsorbent for the Purification of Styrene Monomer: Adsorption Kinetics, Equilibrium and Process Design. Adsorption Science and Technology, 2010, 28, 101-123.	1.5	3
53	Vapor–Liquid Equilibrium at p/kPa = 101.3 of the Binary Mixtures of Ethenyl Acetate with Methanol and Butan-1-ol. Journal of Chemical & Data, 2012, 57, 3198-3202.	1.0	3
54	A New Functional Systems Theory based Methodology for Process Hazards Analysis. Computer Aided Chemical Engineering, 2014, 33, 703-708.	0.3	3

#	Article	IF	Citations
55	Motivational Active Learning in Chemical Engineering. Computer Aided Chemical Engineering, 2020, , 2017-2022.	0.3	3
56	Fault-Tolerant Self-Reconfigurable Control System. Computer Aided Chemical Engineering, 2013, , 901-906.	0.3	3
57	Evaluation of (vapor+liquid) equilibria for the binary systems (1-octanol+cyclohexane) and (1-octanol+n-hexane), at low alcohol compositions. Journal of Chemical Thermodynamics, 2008, 40, 1617-1620.	1.0	2
58	Effect of final products on the kinetics of 1-phenylethanol oxidation with air. Chemical Engineering Research and Design, 2011, 89, 2442-2447.	2.7	1
59	Predictions of high pressure phase equilibria of CO2-containing mixtures with the NRCOSMO model. Fluid Phase Equilibria, 2012, 313, 203-210.	1.4	1
60	Comparative Study of Surrogate Modelling Techniques Applied to Three Different Chemical Processes. Computer Aided Chemical Engineering, 2020, , 145-150.	0.3	1
61	Model transformations and integration for process plant simulation, optimization and visualization. Computer Aided Chemical Engineering, 2018, 43, 285-286.	0.3	1
62	Control strategy for the Super Heat Integrated Distillation Column. Computer Aided Chemical Engineering, 2018, , 1257.	0.3	1
63	On-line Fault Diagnosis by Combining Functional and Dynamic Modelling of Chemical Plants. Computer Aided Chemical Engineering, 2014, 33, 679-684.	0.3	0
64	Ionic Liquids Role in Multifeedstock / Multiproduct Integrated Biorefineries. Computer Aided Chemical Engineering, 2016, 38, 1219-1224.	0.3	0
65	Active Learning of Process Control. Computer Aided Chemical Engineering, 2018, 43, 1693-1698.	0.3	0
66	Integral Management of Process Plants Systems through their Lifecycle using a Model-Based Engineering Approach. Computer Aided Chemical Engineering, 2017, , 2035-2040.	0.3	0
67	Automating HAZOP studies using D-higraphs. Computer Aided Chemical Engineering, 2019, 46, 553-558.	0.3	O