Jun Shintake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8350252/publications.pdf Version: 2024-02-01

IIIN SHINTAKE

#	Article	IF	CITATIONS
1	Soft Robotic Grippers. Advanced Materials, 2018, 30, e1707035.	11.1	1,097
2	Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Advanced Materials, 2016, 28, 231-238.	11.1	593
3	Stretchable pumps for soft machines. Nature, 2019, 572, 516-519.	13.7	263
4	Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators. Soft Robotics, 2018, 5, 466-474.	4.6	222
5	Ultrastretchable Strain Sensors Using Carbon Blackâ€Filled Elastomer Composites and Comparison of Capacitive Versus Resistive Sensors. Advanced Materials Technologies, 2018, 3, 1700284.	3.0	219
6	Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper. IEEE/ASME Transactions on Mechatronics, 2015, 20, 438-446.	3.7	209
7	Variable Stiffness Fiber with Selfâ€Healing Capability. Advanced Materials, 2016, 28, 10142-10148.	11.1	142
8	Bioinspired dual-stiffness origami. Science Robotics, 2018, 3, .	9.9	115
9	A Foldable Antagonistic Actuator. IEEE/ASME Transactions on Mechatronics, 2015, 20, 1997-2008.	3.7	60
10	Allâ€Fabric Wearable Electroadhesive Clutch. Advanced Materials Technologies, 2019, 4, 1800313.	3.0	43
11	Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures. Frontiers in Robotics and Al, 2019, 6, 127.	2.0	42
12	Phase Changing Materials-Based Variable-Stiffness Tensegrity Structures. Soft Robotics, 2020, 7, 362-369.	4.6	40
13	A Variable Stiffness Magnetic Catheter Made of a Conductive Phaseâ€Change Polymer for Minimally Invasive Surgery. Advanced Functional Materials, 2022, 32, .	7.8	40
14	Lighter and Stronger: Cofabricated Electrodes and Variable Stiffness Elements in Dielectric Actuators. Advanced Intelligent Systems, 2020, 2, 2000069.	3.3	24
15	Bio-inspired Tensegrity Fish Robot. , 2020, , .		20
16	Low ost Sensorâ€Rich Fluidic Elastomer Actuators Embedded with Paper Electronics. Advanced Intelligent Systems, 2020, 2, 2000025.	3.3	17
17	Stretchable and Soft Electroadhesion Using Liquidâ€Metal Subsurface Microelectrodes. Advanced Materials Technologies, 2021, 6, 2100263.	3.0	16
18	Self-Sensing McKibben Artificial Muscles Embedded With Dielectric Elastomer Sensor. IEEE Robotics and Automation Letters, 2021, 6, 6274-6280.	3.3	16

JUN SHINTAKE

#	Article	IF	CITATIONS
19	Deep Reinforcement Learning Framework for Underwater Locomotion of Soft Robot. , 2021, , .		12
20	Cartilage structure increases swimming efficiency of underwater robots. Scientific Reports, 2021, 11, 11288.	1.6	8
21	Monolithic Stacked Dielectric Elastomer Actuators. Frontiers in Robotics and AI, 2021, 8, 714332.	2.0	8
22	Dielectric Elastomer Fiber Actuators with Aqueous Electrode. Polymers, 2021, 13, 4310.	2.0	8
23	Characterization of Sustainable Robotic Materials and Finite Element Analysis of Soft Actuators Under Biodegradation. Frontiers in Robotics and Al, 2021, 8, 760485.	2.0	7
24	Large, Fast, and Bidirectional Bending of Slideâ€Ring Polymer Materials. Advanced Intelligent Systems, 2020, 2, 1900155.	3.3	6
25	Rapid Fabrication Method for Soft Devices Using Offâ€theâ€5helf Conductive and Dielectric Acrylic Elastomers. Advanced Intelligent Systems, 2021, 3, 2000173.	3.3	6
26	Fiber-reinforced soft polymeric manipulator with smart motion scaling and stiffness tunability. Cell Reports Physical Science, 2021, 2, 100600.	2.8	6
27	Foldable Kirigami Paper Electronics. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900891.	0.8	5
28	Green Robotics: Toward Realization of Environmentally Friendly Soft Robots. Journal of Robotics and Mechatronics, 2022, 34, 270-272.	0.5	5
29	Characterization of dielectric elastomer actuators made of slide ring materials. , 2019, , .		3
30	Characterization of slide ring materials for dielectric elastomer actuators. Smart Materials and Structures, 2022, 31, 025028.	1.8	3
31	Characterization of Bio-Degradable Materials for Soft Robotics. , 2019, , .		2
32	Low ost Sensorâ€Rich Fluidic Elastomer Actuators Embedded with Paper Electronics. Advanced Intelligent Systems, 2020, 2, 2080073.	3.3	0
33	Liquid metal-based soft actuators and sensors for biomedical applications. , 2022, , 585-594.		0
34	Grasping State and Object Estimation of a Flat Shell Gripper by Strain and Proximity Measurement using a Single Capacitance-Based Sensor. , 2022, , .		0
35	Enhancement of pressureâ€sensitive adhesive by CO ² laser treatment. Advanced Engineering Materials, 0, , .	1.6	0