David J Peeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8349960/publications.pdf

Version: 2024-02-01

1.5	1 410	840776	996975	
15	1,412	11	15	
papers	citations	h-index	g-index	
15	15	15	2939	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Wellâ€Defined Mannosylated Polymer for Peptide Vaccine Delivery with Enhanced Antitumor Immunity. Advanced Healthcare Materials, 2022, 11, e2101651.	7.6	24
2	Inhibition of SARS-CoV-2 replication in the lung with siRNA/VIPER polyplexes. Journal of Controlled Release, 2022, 345, 661-674.	9.9	23
3	Lytic Polyplex Vaccines Enhance Antigenâ€Specific Cytotoxic T Cell Response through Induction of Local Cell Death. Advanced Therapeutics, 2021, 4, 2100005.	3.2	5
4	Replacement of L-amino acid peptides with D-amino acid peptides mitigates anti-PEG antibody generation against polymer-peptide conjugates in mice. Journal of Controlled Release, 2021, 331, 142-153.	9.9	20
5	Polyplex transfection from intracerebroventricular delivery is not significantly affected by traumatic brain injury. Journal of Controlled Release, 2020, 322, 149-156.	9.9	2
6	Formulation of thrombin-inhibiting hydrogels <i>via</i> self-assembly of ionic peptides with peptide-modified polymers. Soft Matter, 2020, 16, 3762-3768.	2.7	5
7	Optimized nonviral gene delivery for primary urinary renal progenitor cells to enhance cell migration. Journal of Biomedical Materials Research - Part A, 2019, 107, 2718-2725.	4.0	4
8	Targeting Ligands Deliver Model Drug Cargo into the Central Nervous System along Autonomic Neurons. ACS Nano, 2019, 13, 10961-10971.	14.6	15
9	pH-Sensitive Polymers as Dynamic Mediators of Barriers to Nucleic Acid Delivery. Bioconjugate Chemistry, 2019, 30, 350-365.	3. 6	22
10	pH-sensitive polymer micelles provide selective and potentiated lytic capacity to venom peptides for effective intracellular delivery. Biomaterials, 2019, 192, 235-244.	11.4	55
11	In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells. Journal of Controlled Release, 2018, 276, 50-58.	9.9	52
12	Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science, 2018, 360, 176-182.	12.6	961
13	Development of switchable polymers to address the dilemma of stability and cargo release in polycationic nucleic acid carriers. Biomaterials, 2017, 127, 89-96.	11.4	49
14	Nanoâ€Sized Sunflower Polycations As Effective Gene Transfer Vehicles. Small, 2016, 12, 2750-2758.	10.0	39
15	Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis, 2015, 30, 577-591.	2.6	136