Jialiang Xu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8349875/jialiang-xu-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

7,662 86 130 35 h-index g-index citations papers 8,754 7.8 5.98 146 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
130	Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	12
129	Graphdiyne: Electronics, Thermoelectrics, and Magnetism Applications 2022 , 315-339		0
128	Optical Properties and Applications of Crystalline Materials. <i>Advanced Optical Materials</i> , 2021 , 9, 21023	39 8 .1	O
127	Crystalline Porous Materials for Nonlinear Optics. <i>Small</i> , 2021 , 17, e2006416	11	16
126	Fully Controllable Structural Phase Transition in Thermomechanical Molecular Crystals with a Very Small Thermal Hysteresis. <i>Small</i> , 2021 , 17, e2006757	11	6
125	Aggregation Induced Emission and Nonlinear Optical Properties of an Intramolecular Charge-Transfer Compound. <i>Materials</i> , 2021 , 14,	3.5	1
124	Solvent induced enhancement of nonlinear optical response of graphdiyne. <i>Chinese Chemical Letters</i> , 2021 , 32, 525-528	8.1	8
123	Electrochromic Two-dimensional Covalent Organic Framework with a Reversible Dark-to-transparent Switch. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 185-186	2.2	0
122	Multi-functional Nanodrug Based on a Three-dimensional Framework for Targeted Photo-chemo Synergetic Cancer Therapy. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001874	10.1	8
121	Strongly Coupled Systems for Nonlinear Optics. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2000514	8.3	3
120	Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. <i>Nature Communications</i> , 2021 , 12, 1068	17.4	33
119	Aggregation-induced emission materials for nonlinear optics. <i>Aggregate</i> , 2021 , 2, e28	22.9	17
118	Nonlinear optics of graphdiyne. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 6413-6428	7.8	3
117	Crystallization-induced emission enhancement of highly electron-deficient dicyanomethylene-bridged triarylboranes. <i>Chemical Communications</i> , 2021 , 57, 7926-7929	5.8	2
116	Recent Progress in 2D Metal-Organic Frameworks for Optical Applications. <i>Advanced Optical Materials</i> , 2020 , 8, 2000110	8.1	38
115	Consecutive and Extensive Transition of Luminescent Color of an Organic Solid Material by Applying High Pressure. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 14911-14917	3.8	3
114	Photodetectors: Graphdiyne-Based Flexible Photodetectors with High Responsivity and Detectivity (Adv. Mater. 23/2020). <i>Advanced Materials</i> , 2020 , 32, 2070175	24	2

(2019-2020)

113	Graphdiyne as a Promising Mid-Infrared Nonlinear Optical Material for Ultrafast Photonics. <i>Advanced Optical Materials</i> , 2020 , 8, 2000067	8.1	38
112	Graphdiyne-Polymer Nanocomposite as a Broadband and Robust Saturable Absorber for Ultrafast Photonics. <i>Laser and Photonics Reviews</i> , 2020 , 14, 1900367	8.3	56
111	Nonlinear Optical Perovskites: Halide Perovskites for Nonlinear Optics (Adv. Mater. 3/2020). <i>Advanced Materials</i> , 2020 , 32, 2070017	24	5
110	Dielectric phase transition of an ABX-type perovskite with a pentahedral to octahedral transformation. <i>Dalton Transactions</i> , 2020 , 49, 2218-2224	4.3	11
109	Graphdiyne-Based Flexible Photodetectors with High Responsivity and Detectivity. <i>Advanced Materials</i> , 2020 , 32, e2001082	24	80
108	2D organic-inorganic hybrid perovskite materials for nonlinear optics. <i>Nanophotonics</i> , 2020 , 9, 1787-181	6 .3	35
107	Graphdiyne Nanosheets for Multicolor Random Lasers. ACS Applied Nano Materials, 2020, 3, 4990-4996	5.6	11
106	An air-stable two-dimensional perovskite artificial synapse. <i>Semiconductor Science and Technology</i> , 2020 , 35, 104001	1.8	4
105	Supramolecular Cages Based on a Silver Complex as Adaptable Hosts for Poly-Aromatic Hydrocarbons. <i>Small</i> , 2020 , 16, e2001377	11	3
104	Atomic-Level Functionalized Graphdiyne for Electrocatalysis Applications. <i>Catalysts</i> , 2020 , 10, 929	4	4
104	Atomic-Level Functionalized Graphdiyne for Electrocatalysis Applications. <i>Catalysts</i> , 2020 , 10, 929 Halide Perovskites for Nonlinear Optics. <i>Advanced Materials</i> , 2020 , 32, e1806736	24	124
		4 24 7.1	
103	Halide Perovskites for Nonlinear Optics. <i>Advanced Materials</i> , 2020 , 32, e1806736 Safety regulation of gel electrolytes in electrochemical energy storage devices. <i>Science China</i>	,	124
103	Halide Perovskites for Nonlinear Optics. <i>Advanced Materials</i> , 2020 , 32, e1806736 Safety regulation of gel electrolytes in electrochemical energy storage devices. <i>Science China Materials</i> , 2019 , 62, 1556-1573 Recent advances in luminescent metal-organic frameworks for chemical sensors. <i>Science China</i>	7.1	124
103	Halide Perovskites for Nonlinear Optics. <i>Advanced Materials</i> , 2020 , 32, e1806736 Safety regulation of gel electrolytes in electrochemical energy storage devices. <i>Science China Materials</i> , 2019 , 62, 1556-1573 Recent advances in luminescent metal-organic frameworks for chemical sensors. <i>Science China Materials</i> , 2019 , 62, 1655-1678 Two luminescent coordination polymers as highly selective and sensitive chemosensors for	7.1	124 13 99
103 102 101	Halide Perovskites for Nonlinear Optics. Advanced Materials, 2020, 32, e1806736 Safety regulation of gel electrolytes in electrochemical energy storage devices. Science China Materials, 2019, 62, 1556-1573 Recent advances in luminescent metal-organic frameworks for chemical sensors. Science China Materials, 2019, 62, 1655-1678 Two luminescent coordination polymers as highly selective and sensitive chemosensors for Cr-anions in aqueous medium. Dalton Transactions, 2019, 48, 387-394 Engineering Donor-Acceptor Heterostructure Metal-Organic Framework Crystals for Photonic	7.1 7.1 4.3	124 13 99 69
103 102 101 100	Halide Perovskites for Nonlinear Optics. Advanced Materials, 2020, 32, e1806736 Safety regulation of gel electrolytes in electrochemical energy storage devices. Science China Materials, 2019, 62, 1556-1573 Recent advances in luminescent metal-organic frameworks for chemical sensors. Science China Materials, 2019, 62, 1655-1678 Two luminescent coordination polymers as highly selective and sensitive chemosensors for Cr-anions in aqueous medium. Dalton Transactions, 2019, 48, 387-394 Engineering Donor-Acceptor Heterostructure Metal-Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie - International Edition, 2019, 58, 13890-13896 In-situ synthesis of molecular magnetorefrigerant materials. Coordination Chemistry Reviews, 2019,	7.1 7.1 4.3	124 13 99 69 70

95	An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy. <i>Nanoscale</i> , 2019 , 11, 11709-11718	7.7	45
94	Drastic photoluminescence modulation of an organic molecular crystal with high pressure. Materials Chemistry Frontiers, 2019, 3, 1510-1517	7.8	12
93	Polymorph dependent linear and nonlinear optical properties of naphthalenyl functionalized fluorenones. <i>Dyes and Pigments</i> , 2019 , 166, 272-282	4.6	13
92	Kerr Nonlinearity in 2D Graphdiyne for Passive Photonic Diodes. <i>Advanced Materials</i> , 2019 , 31, e180798	31 ₂₄	136
91	Benchmark selectivity -xylene separation by a non-porous molecular solid through liquid or vapor extraction. <i>Chemical Science</i> , 2019 , 10, 8850-8854	9.4	17
90	Chiral Perovskites: Promising Materials toward Next-Generation Optoelectronics. <i>Small</i> , 2019 , 15, e190)2 <u>2</u> 37	79
89	InnenrEktitelbild: Engineering DonorAcceptor Heterostructure MetalDrganic Framework Crystals for Photonic Logic Computation (Angew. Chem. 39/2019). <i>Angewandte Chemie</i> , 2019 , 131, 141	3 3 :941	35
88	Geminiarene: A New Macrocyclic Arene with Dual/Gemini Molecular Conformation and Guest Selectivity in the Solid State. <i>Chemical Research in Chinese Universities</i> , 2019 , 35, 745-746	2.2	
87	Engineering DonorAcceptor Heterostructure MetalDrganic Framework Crystals for Photonic Logic Computation. <i>Angewandte Chemie</i> , 2019 , 131, 14028-14034	3.6	15
86	Robust thermoelastic microactuator based on an organic molecular crystal. <i>Nature Communications</i> , 2019 , 10, 4573	17.4	29
85	Chiral Perovskite: Chiral Perovskites: Promising Materials toward Next-Generation Optoelectronics (Small 39/2019). <i>Small</i> , 2019 , 15, 1970209	11	5
84	Solvent dependent linear and nonlinear optical properties of triphenylamine unit incorporated difluoroboron Ediketonate complexes. <i>Dyes and Pigments</i> , 2019 , 162, 776-785	4.6	22
83	Enhanced photovoltaic performance of dye-sensitized solar cells (DSSCs) using graphdiyne-doped TiO2 photoanode. <i>Journal of Materials Science</i> , 2019 , 54, 4893-4904	4.3	9
82	Enhanced Second Harmonic Generation from Ferroelectric HfO-Based Hybrid Metasurfaces. <i>ACS Nano</i> , 2019 , 13, 1213-1222	16.7	15
81	Multi-Stimuli-Responsive Fluorescence Switching from a Pyridine-Functionalized Tetraphenylethene AIEgen. <i>ACS Applied Materials & Distriction of the Pyridine State of the Pyrid</i>	9.5	116
80	THz Generation and Detection by Fluorenone Based Organic Crystals. ACS Photonics, 2018, 5, 671-677	6.3	29
79	Template Controlled Synthesis of Mesoporous TiO2Particles for Efficient Photoanodes in Dye Sensitized Solar Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F1-F6	3.9	7
78	Graphdiyne-hybridized N-doped TiO2 nanosheets for enhanced visible light photocatalytic activity. Journal of Materials Science, 2018, 53, 8921-8932	4.3	29

(2016-2018)

77	Yb(III)-based MOFs with different bulky backbone ligands for optical detection and degradation of organic molecules in wastewater. <i>Polyhedron</i> , 2018 , 154, 411-419	2.7	6
76	Chiral Lead Halide Perovskite Nanowires for Second-Order Nonlinear Optics. <i>Nano Letters</i> , 2018 , 18, 5411-5417	11.5	114
75	A novel amphiphilic fluorescent probe BODIPYCMC-cRGD as a biomarker and nanoparticle vector <i>RSC Advances</i> , 2018 , 8, 20087-20094	3.7	8
74	Functionalized twistacenes for solid state nonlinear optical materials. <i>Dyes and Pigments</i> , 2018 , 149, 876-881	4.6	9
73	Strong optical nonlinearities of self-assembled polymorphic microstructures of phenylethynyl functionalized fluorenones. <i>Chinese Chemical Letters</i> , 2018 , 29, 297-300	8.1	20
72	Controlling the gelation temperature of biomimetic polyisocyanides. <i>Chinese Chemical Letters</i> , 2018 , 29, 281-284	8.1	16
71	Wavelength dependent nonlinear optical response of tetraphenylethene aggregation-induced emission luminogens. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 2263-2271	7.8	27
70	Compositing Two-Dimensional Materials with TiO2 for Photocatalysis. <i>Catalysts</i> , 2018 , 8, 590	4	16
69	Utilizing an effective framework to dye energy transfer in a carbazole-based metal®rganic framework for high performance white light emission tuning. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 28	368-287	4 ²⁸
68	Confining Potential as a Function of Polymer Stiffness and Concentration in Entangled Polymer Solutions. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 5613-5620	3.4	6
67	Third- and high-order nonlinear optical properties of an intramolecular charge-transfer compound. <i>RSC Advances</i> , 2017 , 7, 4825-4829	3.7	15
66	Controlling the Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	11
65	Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding. <i>Macromolecules</i> , 2017 , 50, 9058-9065	5.5	28
64	High-Efficiency Second-Harmonic Generation from Hybrid Light-Matter States. <i>Nano Letters</i> , 2016 , 16, 7352-7356	11.5	68
63	Conjugated Polymer-Based Hybrid Materials for Turn-On Detection of CO2 in Plant Photosynthesis. <i>Analytical Chemistry</i> , 2016 , 88, 6593-7	7.8	18
62	Temperature-dependent uniaxial ratchetting of ultra-high molecular weight polyethylene. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2016 , 39, 839-849	3	11
61	Nanoscale Study of Polymer Dynamics. ACS Nano, 2016, 10, 1434-41	16.7	25
60	Water-Soluble Conjugated Polymers for the Detection and Inhibition of Protein Aggregation. <i>Advanced Functional Materials</i> , 2016 , 26, 9026-9031	15.6	30

59	The effect of several microalgae isolated from East China Sea on growth and survival rate of postset juveniles of razor clam, Sinonovacula constricta (Lamarck, 1818). <i>Aquaculture Nutrition</i> , 2016 , 22, 846-856	3.2	17
58	Optically Active Materials: Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative (Adv. Funct. Mater. 48/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 9083-9083	15.6	
57	Nonlinear Optical Materials 2016 ,		2
56	Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative. <i>Advanced Functional Materials</i> , 2016 , 26, 8968-8977	15.6	56
55	Extended Econjugated ruthenium zinc-porphyrin complexes with enhanced nonlinear-optical properties. <i>Chemical Communications</i> , 2015 , 51, 2855-8	5.8	47
54	Organized chromophoric assemblies for nonlinear optical materials: towards (sub)wavelength scale architectures. <i>Small</i> , 2015 , 11, 1113-29	11	50
53	Controlling Microsized Polymorphic Architectures with Distinct Linear and Nonlinear Optical Properties. <i>Advanced Optical Materials</i> , 2015 , 3, 948-956	8.1	34
52	Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance. <i>Scientific Reports</i> , 2014 , 4, 7426	4.9	27
51	High-efficiency high-power QCW diode-side-pumped zigzag Nd:YAG ceramic slab laser. <i>Applied Physics B: Lasers and Optics</i> , 2013 , 111, 111-116	1.9	16
50	Denitrogenation of Straight-run Diesel With Complexing Extraction. <i>Petroleum Science and Technology</i> , 2013 , 31, 777-782	1.4	19
49	The Determination of Diesel Density and Refractive Index by Near Infrared Spectroscopy. <i>Petroleum Science and Technology</i> , 2013 , 31, 2489-2493	1.4	2
48	The Determination of a Diesel Solidifying Point by Near Infrared Spectroscopy. <i>Petroleum Science and Technology</i> , 2013 , 31, 1974-1979	1.4	1
47	Self-assembled organic microfibers for nonlinear optics. <i>Advanced Materials</i> , 2013 , 25, 2084-9	24	98
46	Molecular Dynamics Study on Permeability of Gas Molecules through Amorphous PPX Polymers. <i>International Polymer Processing</i> , 2013 , 28, 24-33	1	1
45	Hydrothermal Synthesis of Copper Hydroxyphosphate Hierarchical Architectures. <i>Chemical Engineering and Technology</i> , 2012 , 35, 2189-2194	2	6
44	Electrocatalytic Oxidation of Formic Acid at Pt Modified Electrodes: Substrate Effect of Unsintered Au Nano-Structure. <i>Fuel Cells</i> , 2012 , 12, 971-977	2.9	9
43	SDS-Catalyzed Esterification Process to Synthesize Ethyl Chloroacetate. <i>Petroleum Science and Technology</i> , 2011 , 29, 462-467	1.4	4
42	A 200 W diode-side-pumped CW 2 th Tm:YAG laser with water cooling at 8tc. <i>Applied Physics B:</i> Lasers and Optics, 2011 , 103, 83-88	1.9	20

(2008-2011)

41	A 7.5 W quasi-continuous-wave sodium D2 laser generated from single-pass sum-frequency generation in LBO crystal. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 102, 781-787	1.9	7
40	High-power diode side-pumped Nd:YAG laser on the low gain three lines near 1.1 h. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 104, 45-52	1.9	9
39	The Application of Sulfonate DNW-1 Resin Catalyst in the Synthesis of Methyl Palmitate. <i>Petroleum Science and Technology</i> , 2011 , 29, 2299-2305	1.4	
38	Aggregate nanostructures of organic molecular materials. <i>Accounts of Chemical Research</i> , 2010 , 43, 149	6254038	349
37	Crystal Hierarchical Supramolecular Architectures from 1-D Precursor Single-Crystal Seeds. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2925-2931	3.8	24
36	Distinct Nanostructures from a Molecular Shuttle: Effects of Shuttling Movement on Nanostructural Morphologies. <i>Advanced Functional Materials</i> , 2009 , 19, 141-149	15.6	46
35	Construction of Large-Scale Highly Ordered Macroporous Monoliths of EConjugated Polymers. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1940-4	4.8	15
34	Theoretical and experimental investigations of nanosecond 177.3 nm deep-ultraviolet light by second harmonic generation in KBBF. <i>Applied Physics B: Lasers and Optics</i> , 2009 , 96, 415-422	1.9	22
33	Asymmetric and Symmetric DipoleDipole Interactions Drive Distinct Aggregation and Emission Behavior of Intramolecular Charge-Transfer Molecules. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5924	- <i>3</i> 932	62
32	Visible near-infrared chemosensor for mercury ion. <i>Organic Letters</i> , 2008 , 10, 1481-4	6.2	348
31	Surfactant-Free Synthesis and Functionalization of Highly Fluorescent Gold Quantum Dots. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 10778-10783	3.8	102
30	Supramolecular helix of an amphiphilic pyrene derivative induced by chiral tryptophan through electrostatic interactions. <i>Organic Letters</i> , 2008 , 10, 645-8	6.2	65
29	Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement. <i>Langmuir</i> , 2008 , 24, 8297-302	4	25
28	Charge transfer chromophore-stopped [2]rotaxane through [2 + 2] cycloaddition. <i>Journal of Organic Chemistry</i> , 2008 , 73, 7702-9	4.2	31
27	Morphology transition and aggregation-induced emission of an intramolecular charge-transfer compound. <i>Langmuir</i> , 2008 , 24, 4231-7	4	117
26	Fabrication of Homogeneous Hybrid Nanorod of Organic/Inorganic Semiconductor Materials. Journal of Physical Chemistry C, 2008, 112, 8223-8228	3.8	22
25	Reversible and Highly Selective Fluorescent Sensor for Mercury(II) Based on a Water-Soluble Poly(para-phenylene)s Containing Thymine and Sulfonate Moieties. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1588-1592	4.8	32
24	Fabrication and Field-Emission Properties of Large-Area Nanostructures of the Organic Charge-Transfer Complex Cu-TCNAQ. <i>Advanced Materials</i> , 2008 , 20, 309-313	24	65

23	A novel supramolecular system: combination of two switchable processes in a [2]rotaxane. <i>Chemistry - an Asian Journal</i> , 2008 , 3, 2091-6	4.5	13
22	Photoisomerization of spiropyran for driving a molecular shuttle. <i>Organic Letters</i> , 2007 , 9, 3929-32	6.2	66
21	Unusual fluorescence enhancement of a novel carbazolyldiacetylene bound to gold nanoparticles. <i>Langmuir</i> , 2007 , 23, 6754-60	4	39
20	Gold nanoparticle-based monitoring of the reduction of oxidized to reduced glutathione. <i>Langmuir</i> , 2007 , 23, 8815-9	4	26
19	A Novel Ultra-hydrophobic Surface: Statically Non-wetting but Dynamically Non-sliding. <i>Advanced Functional Materials</i> , 2007 , 17, 2739-2745	15.6	82
18	Controlled aggregation of functionalized gold nanoparticles with a novel conjugated oligomer. <i>ChemPhysChem</i> , 2007 , 8, 906-12	3.2	18
17	Induced helix formation and stabilization of a meta-linked polymer containing pyridine units. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 1403-1412	2.5	7
16	A colorimetric and fluorometric dual-model assay for mercury ion by a molecule. <i>Organic Letters</i> , 2007 , 9, 2313-6	6.2	249
15	Synthesis and characterization of pyrrolidin-2-one fused N-confused calix[4]phyrins. <i>Organic Letters</i> , 2006 , 8, 1137-40	6.2	33
14	Synthesis of N-confused phlorins via an addition/cyclization pathway. <i>Journal of Organic Chemistry</i> , 2006 , 71, 9739-42	4.2	23
13	Leaching of copper from an industrial sludge applied on a soil column. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2006 , 76, 663-70	2.7	1
12	Comparison of PAH and nonylphenol uptake by carp (Cyprinus carpio) and semipermeable membrane devices (SPMDs) from water. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2006 , 77, 211-8	2.7	5
11	Electrical conductivity of a single C60 nanotube. <i>Applied Physics Letters</i> , 2005 , 87, 263117	3.4	35
10	Leaching behavior of copper (II) in a soil column experiment. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2005 , 75, 1028-33	2.7	3
9	Fabrication of Hollow Capsules Based on Hydrogen Bonding. Advanced Materials, 2003, 15, 832-835	24	128
8	Preparation and properties of poly(vinyl alcohol) Dermiculite nanocomposites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2003 , 41, 749-755	2.6	47
7	Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. <i>Journal of Geophysical Research</i> , 1986 , 91, 4673		3120
6	1D Chiral Lead Halide Perovskites with Superior Second-Order Optical Nonlinearity. <i>Advanced Optical Materials</i> ,2101545	8.1	10

LIST OF PUBLICATIONS

5	Energy Conversion in Single-Crystal-to-Single-Crystal Phase Transition Materials. <i>Advanced Energy Materials</i> ,2100324	21.8	6
4	Recent Progress in Luminous Particle-Encapsulated Host G uest Metal-Organic Frameworks for Optical Applications. <i>Advanced Optical Materials</i> ,2100283	8.1	13
3	Tin-Based Chiral Perovskites with Second-Order Nonlinear Optical Properties. <i>Advanced Photonics Research</i> ,2100056	1.9	12
2	0D Chiral Hybrid Indium(III) Halides for Second Harmonic Generation. <i>Dalton Transactions</i> ,	4.3	2
1	Self-Assembled Nonlinear Optical Crystals Based on an Asymmetric Fluorenone Derivative. <i>Crystal Growth and Design</i> ,	3.5	2