Jialiang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8349875/publications.pdf

Version: 2024-02-01

70961 34900 10,035 141 41 98 citations h-index g-index papers 146 146 146 10492 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Calibration of the ruby pressure gauge to 800 kbar under quasiâ€hydrostatic conditions. Journal of Geophysical Research, 1986, 91, 4673-4676.	3.3	3,765
2	Visible Near-Infrared Chemosensor for Mercury Ion. Organic Letters, 2008, 10, 1481-1484.	2.4	373
3	Aggregate Nanostructures of Organic Molecular Materials. Accounts of Chemical Research, 2010, 43, 1496-1508.	7.6	362
4	A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule. Organic Letters, 2007, 9, 2313-2316.	2.4	258
5	Chiral Lead Halide Perovskite Nanowires for Second-Order Nonlinear Optics. Nano Letters, 2018, 18, 5411-5417.	4.5	212
6	Halide Perovskites for Nonlinear Optics. Advanced Materials, 2020, 32, e1806736.	11.1	210
7	Kerr Nonlinearity in 2D Graphdiyne for Passive Photonic Diodes. Advanced Materials, 2019, 31, e1807981.	11.1	187
8	Graphdiyneâ€Based Flexible Photodetectors with High Responsivity and Detectivity. Advanced Materials, 2020, 32, e2001082.	11.1	171
9	Multi-Stimuli-Responsive Fluorescence Switching from a Pyridine-Functionalized Tetraphenylethene AlEgen. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5819-5827.	4.0	170
10	In-situ synthesis of molecular magnetorefrigerant materials. Coordination Chemistry Reviews, 2019, 394, 39-52.	9.5	166
11	Fabrication of Hollow Capsules Based on Hydrogen Bonding. Advanced Materials, 2003, 15, 832-835.	11.1	142
12	Morphology Transition and Aggregation-Induced Emission of an Intramolecular Charge-Transfer Compound. Langmuir, 2008, 24, 4231-4237.	1.6	137
13	Chiral Perovskites: Promising Materials toward Nextâ€Generation Optoelectronics. Small, 2019, 15, e1902237.	5.2	137
14	Recent advances in luminescent metal-organic frameworks for chemical sensors. Science China Materials, 2019, 62, 1655-1678.	3.5	132
15	Selfâ€Assembled Organic Microfibers for Nonlinear Optics. Advanced Materials, 2013, 25, 2084-2089.	11.1	119
16	Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nature Communications, 2021, 12, 1068.	5.8	115
17	Surfactant-Free Synthesis and Functionalization of Highly Fluorescent Gold Quantum Dots. Journal of Physical Chemistry C, 2008, 112, 10778-10783.	1.5	113
18	Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie - International Edition, 2019, 58, 13890-13896.	7.2	108

#	Article	IF	CITATIONS
19	Graphdiyneâ€Polymer Nanocomposite as a Broadband and Robust Saturable Absorber for Ultrafast Photonics. Laser and Photonics Reviews, 2020, 14, 1900367.	4.4	99
20	High-Efficiency Second-Harmonic Generation from Hybrid Light-Matter States. Nano Letters, 2016, 16, 7352-7356.	4.5	90
21	A Novel Ultraâ€hydrophobic Surface: Statically Nonâ€wetting but Dynamically Nonâ€sliding. Advanced Functional Materials, 2007, 17, 2739-2745.	7.8	88
22	Two luminescent coordination polymers as highly selective and sensitive chemosensors for Cr ^{VI} -anions in aqueous medium. Dalton Transactions, 2019, 48, 387-394.	1.6	87
23	Recent Progress in 2D Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2020, 8, 2000110.	3.6	85
24	An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy. Nanoscale, 2019, 11, 11709-11718.	2.8	79
25	Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative. Advanced Functional Materials, 2016, 26, 8968-8977.	7.8	77
26	Fabrication and Fieldâ€Emission Properties of Largeâ€Area Nanostructures of the Organic Chargeâ€Transfer Complex Cuâ€TCNAQ. Advanced Materials, 2008, 20, 309-313.	11.1	71
27	Photoisomerization of Spiropyran for Driving a Molecular Shuttle. Organic Letters, 2007, 9, 3929-3932.	2.4	69
28	Supramolecular Helix of an Amphiphilic Pyrene Derivative Induced by Chiral Tryptophan through Electrostatic Interactions. Organic Letters, 2008, 10, 645-648.	2.4	69
29	Asymmetric and Symmetric Dipoleâ^'Dipole Interactions Drive Distinct Aggregation and Emission Behavior of Intramolecular Charge-Transfer Molecules. Journal of Physical Chemistry C, 2009, 113, 5924-5932.	1.5	68
30	Organized Chromophoric Assemblies for Nonlinear Optical Materials: Towards (Sub)wavelength Scale Architectures. Small, 2015, 11, 1113-1129.	5.2	63
31	2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics, 2020, 9, 1787-1810.	2.9	60
32	Graphdiyne as a Promising Midâ€Infrared Nonlinear Optical Material for Ultrafast Photonics. Advanced Optical Materials, 2020, 8, 2000067.	3.6	57
33	Aggregationâ€induced emission materials for nonlinear optics. Aggregate, 2021, 2, e28.	5.2	56
34	Extended π-conjugated ruthenium zinc–porphyrin complexes with enhanced nonlinear-optical properties. Chemical Communications, 2015, 51, 2855-2858.	2.2	55
35	Preparation and properties of poly(vinyl alcohol)-vermiculite nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 749-755.	2.4	53
36	Distinct Nanostructures from a Molecular Shuttle: Effects of Shuttling Movement on Nanostructural Morphologies. Advanced Functional Materials, 2009, 19, 141-149.	7.8	53

#	Article	IF	CITATIONS
37	1D Chiral Lead Halide Perovskites with Superior Secondâ€Order Optical Nonlinearity. Advanced Optical Materials, 2022, 10, .	3.6	53
38	Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window. Angewandte Chemie - International Edition, 2022, 61, .	7.2	53
39	Crystalline Porous Materials for Nonlinear Optics. Small, 2021, 17, e2006416.	5.2	52
40	Robust thermoelastic microactuator based on an organic molecular crystal. Nature Communications, 2019, 10, 4573.	5.8	48
41	Graphdiyne-hybridized N-doped TiO2 nanosheets for enhanced visible light photocatalytic activity. Journal of Materials Science, 2018, 53, 8921-8932.	1.7	44
42	THz Generation and Detection by Fluorenone Based Organic Crystals. ACS Photonics, 2018, 5, 671-677.	3.2	42
43	Unusual Fluorescence Enhancement of a Novel Carbazolyldiacetylene Bound to Gold Nanoparticles. Langmuir, 2007, 23, 6754-6760.	1.6	40
44	Electrical conductivity of a single C60 nanotube. Applied Physics Letters, 2005, 87, 263117.	1.5	39
45	Controlling Microsized Polymorphic Architectures with Distinct Linear and Nonlinear Optical Properties. Advanced Optical Materials, 2015, 3, 948-956.	3.6	39
46	Recent Progress in Luminous Particleâ€Encapsulated Host–Guest Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2021, 9, 2100283.	3.6	39
47	Synthesis and Characterization of Pyrrolidin-2-one Fused N-Confused Calix[4]phyrins. Organic Letters, 2006, 8, 1137-1140.	2.4	38
48	Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorganic Chemistry Frontiers, 2018, 5, 2868-2874.	3.0	38
49	Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding. Macromolecules, 2017, 50, 9058-9065.	2.2	36
50	Wavelength dependent nonlinear optical response of tetraphenylethene aggregation-induced emission luminogens. Materials Chemistry Frontiers, 2018, 2, 2263-2271.	3.2	36
51	Waterâ€Soluble Conjugated Polymers for the Detection and Inhibition of Protein Aggregation. Advanced Functional Materials, 2016, 26, 9026-9031.	7.8	34
52	Reversible and Highly Selective Fluorescent Sensor for Mercury(II) Based on a Waterâ€Soluble Poly(<i>para</i> à€phenylene)s Containing Thymine and Sulfonate Moieties. Macromolecular Rapid Communications, 2008, 29, 1588-1592.	2.0	33
53	Charge Transfer Chromophore-Stopped [2]Rotaxane through [2 + 2] Cycloaddition. Journal of Organic Chemistry, 2008, 73, 7702-7709.	1.7	33
54	Theoretical and experimental investigations of nanosecond 177.3Ânm deep-ultraviolet light by second harmonic generation inÂKBBF. Applied Physics B: Lasers and Optics, 2009, 96, 415-422.	1.1	32

#	Article	IF	CITATIONS
55	Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance. Scientific Reports, 2014, 4, 7426.	1.6	32
56	The effect of several microalgae isolated from East China Sea on growth and survival rate of postset juveniles of razor clam, <i>Sinonovacula constricta </i> (Lamarck, 1818). Aquaculture Nutrition, 2016, 22, 846-856.	1.1	31
57	Nanoscale Study of Polymer Dynamics. ACS Nano, 2016, 10, 1434-1441.	7.3	31
58	Compositing Two-Dimensional Materials with TiO2 for Photocatalysis. Catalysts, 2018, 8, 590.	1.6	31
59	Strongly Coupled Systems for Nonlinear Optics. Laser and Photonics Reviews, 2021, 15, 2000514.	4.4	31
60	Synthesis of N-Confused Phlorins via an Addition/Cyclization Pathway. Journal of Organic Chemistry, 2006, 71, 9739-9742.	1.7	30
61	Gold Nanoparticle-Based Monitoring of the Reduction of Oxidized to Reduced Glutathione. Langmuir, 2007, 23, 8815-8819.	1.6	30
62	Tinâ€Based Chiral Perovskites with Secondâ€Order Nonlinear Optical Properties. Advanced Photonics Research, 2021, 2, 2100056.	1.7	30
63	Benchmark selectivity <i>p</i> -xylene separation by a non-porous molecular solid through liquid or vapor extraction. Chemical Science, 2019, 10, 8850-8854.	3.7	29
64	Enhanced Second Harmonic Generation from Ferroelectric HfO ₂ -Based Hybrid Metasurfaces. ACS Nano, 2019, 13, 1213-1222.	7.3	29
65	Crystal Hierarchical Supramolecular Architectures from 1-D Precursor Single-Crystal Seeds. Journal of Physical Chemistry C, 2010, 114, 2925-2931.	1.5	28
66	Safety regulation of gel electrolytes in electrochemical energy storage devices. Science China Materials, 2019, 62, 1556-1573.	3.5	28
67	Synergistically Directed Assembly of Aromatic Stacks Based Metalâ€Organic Frameworks by Donorâ€Acceptor and Coordination Interactions. Chinese Journal of Chemistry, 2019, 37, 871-877.	2.6	28
68	Solvent dependent linear and nonlinear optical properties of triphenylamine unit incorporated difluoroboron \hat{l}^2 -diketonate complexes. Dyes and Pigments, 2019, 162, 776-785.	2.0	26
69	Large Third-Order Optical Nonlinear Effects of Gold Nanoparticles with Unusual Fluorescence Enhancement. Langmuir, 2008, 24, 8297-8302.	1.6	25
70	Denitrogenation of Straight-run Diesel With Complexing Extraction. Petroleum Science and Technology, 2013, 31, 777-782.	0.7	25
71	Strong optical nonlinearities of self-assembled polymorphic microstructures of phenylethynyl functionalized fluorenones. Chinese Chemical Letters, 2018, 29, 297-300.	4.8	25
72	Energy Conversion in Singleâ€Crystalâ€toâ€Singleâ€Crystal Phase Transition Materials. Advanced Energy Materials, 2022, 12, 2100324.	10.2	25

#	Article	IF	CITATIONS
73	Fabrication of Homogeneous Hybrid Nanorod of Organic/Inorganic Semiconductor Materials. Journal of Physical Chemistry C, 2008, 112, 8223-8228.	1.5	24
74	Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie, 2019, 131, 14028-14034.	1.6	23
75	A 200ÂW diode-side-pumped CW 2Âμm Tm:YAG laser with water cooling at 8°C. Applied Physics B: Lasers and Optics, 2011, 103, 83-88.	1.1	21
76	Dielectric phase transition of an A ₂ BX ₄ -type perovskite with a pentahedral to octahedral transformation. Dalton Transactions, 2020, 49, 2218-2224.	1.6	21
77	Solvent induced enhancement of nonlinear optical response of graphdiyne. Chinese Chemical Letters, 2021, 32, 525-528.	4.8	21
78	Controlled Aggregation of Functionalized Gold Nanoparticles with a Novel Conjugated Oligomer. ChemPhysChem, 2007, 8, 906-912.	1.0	20
79	Nonlinear optics of graphdiyne. Materials Chemistry Frontiers, 2021, 5, 6413-6428.	3.2	20
80	High-efficiency high-power QCW diode-side-pumped zigzag Nd:YAG ceramic slab laser. Applied Physics B: Lasers and Optics, 2013, 111, 111-116.	1.1	19
81	Controlling the gelation temperature of biomimetic polyisocyanides. Chinese Chemical Letters, 2018, 29, 281-284.	4.8	19
82	Multiâ€functional Nanodrug Based on a Threeâ€dimensional Framework for Targeted Photoâ€chemo Synergetic Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001874.	3.9	19
83	Conjugated Polymer-Based Hybrid Materials for Turn-On Detection of CO ₂ in Plant Photosynthesis. Analytical Chemistry, 2016, 88, 6593-6597.	3.2	18
84	Third- and high-order nonlinear optical properties of an intramolecular charge-transfer compound. RSC Advances, 2017, 7, 4825-4829.	1.7	18
85	Drastic photoluminescence modulation of an organic molecular crystal with high pressure. Materials Chemistry Frontiers, 2019, 3, 1510-1517.	3.2	17
86	Polymorph dependent linear and nonlinear optical properties of naphthalenyl functionalized fluorenones. Dyes and Pigments, 2019, 166, 272-282.	2.0	16
87	Graphdiyne Nanosheets for Multicolor Random Lasers. ACS Applied Nano Materials, 2020, 3, 4990-4996.	2.4	16
88	Construction of Largeâ€Scale Highly Ordered Macroporous Monoliths of Ï€â€Conjugated Polymers. Macromolecular Rapid Communications, 2009, 30, 1940-1944.	2.0	15
89	Temperatureâ€dependent uniaxial ratchetting of ultraâ€high molecular weight polyethylene. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 839-849.	1.7	14
90	A novel amphiphilic fluorescent probe BODIPY– <i>O</i> -CMC–cRGD as a biomarker and nanoparticle vector. RSC Advances, 2018, 8, 20087-20094.	1.7	14

#	Article	IF	CITATIONS
91	A fluorescent responsive tetraphenylethene based metal–organic framework. Inorganic Chemistry Communication, 2019, 105, 20-25.	1.8	14
92	OD chiral hybrid indium(<scp>iii</scp>) halides for second harmonic generation. Dalton Transactions, 2022, 51, 8593-8599.	1.6	14
93	A Novel Supramolecular System: Combination of Two Switchable Processes in a [2]Rotaxane. Chemistry - an Asian Journal, 2008, 3, 2091-2096.	1.7	13
94	High-power diode side-pumped Nd:YAG laser on the low gain three lines near $1.1 {\rm \hat{A}} \hat{l} 4$ m. Applied Physics B: Lasers and Optics, 2011, 104, 45-52.	1.1	13
95	Controlling the Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties. ACS Applied Materials & Distinct Linear and Nonlinear Optical Properties. ACS Applied Materials & Distinct Linear and Nonlinear Optical Properties.	4.0	13
96	Functionalized twistacenes for solid state nonlinear optical materials. Dyes and Pigments, 2018, 149, 876-881.	2.0	13
97	Enhanced photovoltaic performance of dye-sensitized solar cells (DSSCs) using graphdiyne-doped TiO2 photoanode. Journal of Materials Science, 2019, 54, 4893-4904.	1.7	13
98	Fully Controllable Structural Phase Transition in Thermomechanical Molecular Crystals with a Very Small Thermal Hysteresis. Small, 2021, 17, e2006757.	5. 2	12
99	Atomic-Level Functionalized Graphdiyne for Electrocatalysis Applications. Catalysts, 2020, 10, 929.	1.6	11
100	Confining Potential as a Function of Polymer Stiffness and Concentration in Entangled Polymer Solutions. Journal of Physical Chemistry B, 2017, 121, 5613-5620.	1.2	10
101	Nonlinear Optical Perovskites: Halide Perovskites for Nonlinear Optics (Adv. Mater. 3/2020). Advanced Materials, 2020, 32, 2070017.	11.1	10
102	Electrocatalytic Oxidation of Formic Acid at Pt Modified Electrodes: Substrate Effect of Unsintered Au Nanoâ€Structure. Fuel Cells, 2012, 12, 971-977.	1.5	9
103	Methylpiperazine based 0D chiral hybrid lead halides for second harmonic generation. Dalton Transactions, 2022, 51, 7248-7254.	1.6	9
104	SDS-Catalyzed Esterification Process to Synthesize Ethyl Chloroacetate. Petroleum Science and Technology, 2011, 29, 462-467.	0.7	8
105	Aggregation Induced Emission and Nonlinear Optical Properties of an Intramolecular Charge-Transfer Compound. Materials, 2021, 14, 1909.	1.3	8
106	Self-Assembled Nonlinear Optical Crystals Based on an Asymmetric Fluorenone Derivative. Crystal Growth and Design, 2022, 22, 3998-4004.	1.4	8
107	Induced helix formation and stabilization of a meta-linked polymer containing pyridine units. Journal of Polymer Science Part A, 2007, 45, 1403-1412.	2.5	7
108	A 7.5ÂW quasi-continuous-wave sodium D2 laser generated fromÂsingle-pass sum-frequency generation in LBO crystal. Applied Physics B: Lasers and Optics, 2011, 102, 781-787.	1.1	7

#	Article	IF	Citations
109	Nonlinear Optical Materials. , 2016, , .		7
110	Template Controlled Synthesis of Mesoporous TiO2Particles for Efficient Photoanodes in Dye Sensitized Solar Cells. Journal of the Electrochemical Society, 2018, 165, F1-F6.	1.3	7
111	Yb(III)-based MOFs with different bulky backbone ligands for optical detection and degradation of organic molecules in wastewater. Polyhedron, 2018, 154, 411-419.	1.0	7
112	Chiral Perovskite: Chiral Perovskites: Promising Materials toward Nextâ€Generation Optoelectronics (Small 39/2019). Small, 2019, 15, 1970209.	5.2	7
113	Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window. Angewandte Chemie, 0, , .	1.6	7
114	Comparison of PAH and nonylphenol Uptake by Carp (Cyprinus carpio) and Semipermeable Membrane Devices (SPMDs) from Water. Bulletin of Environmental Contamination and Toxicology, 2006, 77, 211-218.	1.3	6
115	Hydrothermal Synthesis of Copper Hydroxyphosphate Hierarchical Architectures. Chemical Engineering and Technology, 2012, 35, 2189-2194.	0.9	6
116	An air-stable two-dimensional perovskite artificial synapse. Semiconductor Science and Technology, 2020, 35, 104001.	1.0	6
117	Advances in Emerging Crystalline Porous Materials. Small, 2021, 17, e2102331.	5.2	6
118	Crystallization-induced emission enhancement of highly electron-deficient dicyanomethylene-bridged triarylboranes. Chemical Communications, 2021, 57, 7926-7929.	2.2	6
119	Optical Properties and Applications of Crystalline Materials. Advanced Optical Materials, 2021, 9, 2102394.	3.6	6
120	Photodetectors: Graphdiyneâ€Based Flexible Photodetectors with High Responsivity and Detectivity (Adv. Mater. 23/2020). Advanced Materials, 2020, 32, 2070175.	11.1	5
121	Consecutive and Extensive Transition of Luminescent Color of an Organic Solid Material by Applying High Pressure. Journal of Physical Chemistry C, 2020, 124, 14911-14917.	1.5	4
122	Improving riboflavin production by modifying related metabolic pathways in <i>Ba cillus subtilis</i> Letters in Applied Microbiology, 2022, 74, 78-83.	1.0	4
123	Leaching Behavior of Copper (II) in a Soil Column Experiment. Bulletin of Environmental Contamination and Toxicology, 2005, 75, 1028-1033.	1.3	3
124	The Determination of Diesel Density and Refractive Index by Near Infrared Spectroscopy. Petroleum Science and Technology, 2013, 31, 2489-2493.	0.7	3
125	Supramolecular Cages Based on a Silver Complex as Adaptable Hosts for Polyâ€Aromatic Hydrocarbons. Small, 2020, 16, 2001377.	5.2	3
126	Molecular Dynamics Study on Permeability of Gas Molecules through Amorphous PPX Polymers. International Polymer Processing, 2013, 28, 24-33.	0.3	2

#	Article	IF	Citations
127	Advances in Soft Functional Materials Research. Advanced Functional Materials, 2016, 26, 8807-8809.	7.8	2
128	Functional molecular materials. Chinese Chemical Letters, 2018, 29, 217-218.	4.8	2
129	Electrochromic Two-dimensional Covalent Organic Framework with a Reversible Dark-to-transparent Switch. Chemical Research in Chinese Universities, 2021, 37, 185-186.	1.3	2
130	Second harmonic generation from tetraphenylethylene functionalized graphdiyne. 2D Materials, 2022, 9, 014006.	2.0	2
131	Leaching of Copper from an Industrial Sludge Applied on a Soil Column. Bulletin of Environmental Contamination and Toxicology, 2006, 76, 663-670.	1.3	1
132	The Determination of a Diesel Solidifying Point by Near Infrared Spectroscopy. Petroleum Science and Technology, 2013, 31, 1974-1979.	0.7	1
133	InnenrÃ⅓cktitelbild: Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation (Angew. Chem. 39/2019). Angewandte Chemie, 2019, 131, 14135-14135.	1.6	1
134	The Application of Sulfonate DNW-1 Resin Catalyst in the Synthesis of Methyl Palmitate. Petroleum Science and Technology, 2011, 29, 2299-2305.	0.7	0
135	Optically Active Materials: Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative (Adv. Funct. Mater. 48/2016). Advanced Functional Materials, 2016, 26, 9083-9083.	7.8	0
136	Geminiarene: A New Macrocyclic Arene with Dual/Gemini Molecular Conformation and Guest Selectivity in the Solid State. Chemical Research in Chinese Universities, 2019, 35, 745-746.	1.3	0
137	Materials chemistry at Nankai University: A special issue dedicated to the 100th anniversary of Nankai University. Science China Materials, 2019, 62, 1505-1506.	3.5	0
138	Materials chemistry research at Nankai University $\hat{a} \in \hat{a}$ a themed collection dedicated to the 100th anniversary of Nankai University. Materials Chemistry Frontiers, 2019, 3, 2205-2206.	3.2	0
139	Materials Science at Nankai: A Special Issue Dedicated to the 100th Anniversary of Nankai University. Advanced Materials, 2020, 32, e1907314.	11.1	0
140	The Nonlinear Optics of Self-assembled Supramolecular Systems. , 2016, , .		0
141	Metabolic engineering of <i>Bacillus subtilis</i> for highâ€level production of uridine from glucose. Letters in Applied Microbiology, 0, , .	1.0	0