Andrea Pozzer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8349472/andrea-pozzer-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

188 9,435 45 95 g-index h-index citations papers 6.59 11,790 310 7.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
188	Impact of non-ideality on reconstructing spatial and temporal variations in aerosol acidity with multiphase buffer theory. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 47-63	6.8	O
187	Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel. <i>Geoscientific Model Development</i> , 2022 , 15, 2673-2710	6.3	0
186	Kinetics of OH + SO<sub>2</sub> + M: temperature-dependent rate coefficients in the fall-off regime and the influence of water vapour. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 4969-4984	6.8	1
185	Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 6151-6165	6.8	1
184	A process-oriented evaluation of CAMS reanalysis ozone during tropopause folds over Europe for the period 2003 2 018. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 6275-6289	6.8	O
183	Synergistic HNO-HSO-NH upper tropospheric particle formation <i>Nature</i> , 2022 , 605, 483-489	50.4	5
182	Spatial Distribution of PM-Related Premature Mortality in China <i>GeoHealth</i> , 2021 , 5, e2021GH000532	5	4
181	Global health burden of ambient PM and the contribution of anthropogenic black carbon and organic aerosols. <i>Environment International</i> , 2021 , 159, 107020	12.9	7
180	About right: references in open-access EGU (European Geosciences Union) journals. <i>Geoscience Communication</i> , 2021 , 4, 453-460	0.7	
179	How alkaline compounds control atmospheric aerosol particle acidity. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 14983-15001	6.8	3
178	Global and national assessment of the incidence of asthma in children and adolescents from major sources of ambient NO2. <i>Environmental Research Letters</i> , 2021 , 16, 035020	6.2	5
177	Effects of spatial resolution on WRF v3.8.1 simulated meteorology over the central Himalaya. <i>Geoscientific Model Development</i> , 2021 , 14, 1427-1443	6.3	5
176	Influence of the El NiBBouthern Oscillation on entry stratospheric water vapor in coupled chemistryBcean CCMI and CMIP6 models. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 3725-3740	6.8	1
175	A Global Climatology of Tropopause Folds in CAMS and MERRA-2 Reanalyses. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD034115	4.4	4
174	Ubiquitous atmospheric production of organic acids mediated by cloud droplets. <i>Nature</i> , 2021 , 593, 233	B- 3 3.4	21
173	Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 8195-8211	6.8	3
172	On the link between the Etesian winds, tropopause folds and tropospheric ozone over the Eastern Mediterranean during summer. <i>Atmospheric Research</i> , 2021 , 248, 105161	5.4	5

(2020-2021)

171	Influence of aromatics on tropospheric gas-phase composition. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2615-2636	6.8	11
170	Cold cloud microphysical process rates in a global chemistryllimate model. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 1485-1505	6.8	2
169	The impact of organic pollutants from Indonesian peatland fires on the tropospheric and lower stratospheric composition. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11257-11288	6.8	2
168	Evaluation of the coupled high-resolution atmospheric chemistry model system MECO(n) using in situ and MAX-DOAS NO₂ measurements. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 5241-5269	4	1
167	Impact of pyruvic acid photolysis on acetaldehyde and peroxy radical formation in the boreal forest: theoretical calculations and model results. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 14333-1	4349	O
166	Changing risk factors that contribute to premature mortality from ambient air pollution between 2000 and 2015. <i>Environmental Research Letters</i> , 2020 , 15, 074010	6.2	13
165	A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1341-1361	6.8	11
164	Natural sea-salt emissions moderate the climate forcing of anthropogenic nitrate. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 771-786	6.8	6
163	Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6769)-6 .8 87	17
162	Inappropriate evaluation of methodology and biases by P. Morfeld and T.C. Erren. <i>Cardiovascular Research</i> , 2020 , 116, e102	9.9	1
161	Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. <i>Cardiovascular Research</i> , 2020 , 116, 1910-1917	9.9	185
160	The Red Sea Deep Water is a potent source of atmospheric ethane and propane. <i>Nature Communications</i> , 2020 , 11, 447	17.4	12
159	Effects of Dry Deposition on Surface Ozone over South Asia Inferred from a Regional Chemical Transport Model. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 321-327	3.2	5
158	Measurements of carbonyl compounds around the Arabian Peninsula: overview and model comparison. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 10807-10829	6.8	5
157	Impact of the South Asian monsoon outflow on atmospheric hydroperoxides in the upper troposphere. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 12655-12673	6.8	1
156	Model simulations of atmospheric methane (1997\(\textit{D}\)016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 5787-5809	6.8	O
155	Impact of U.S. Oil and Natural Gas Emission Increases on Surface Ozone Is Most Pronounced in the Central United States. <i>Environmental Science & Environmental Science & Envir</i>	10.3	6
154	Kinetics of the OH + NO₂ reaction: effect of water vapour and new parameterization for global modelling. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 3091-3105	6.8	4

153	Regional and global contributions of air pollution to risk of death from COVID-19. <i>Cardiovascular Research</i> , 2020 , 116, 2247-2253	9.9	123
152	A modeling study of the regional representativeness of surface ozone variation at the WMO/GAW background stations in China. <i>Atmospheric Environment</i> , 2020 , 242, 117672	5.3	4
151	On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. <i>Scientific Reports</i> , 2020 , 10, 5862	4.9	63
150	Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 11587-11612	6.8	16
149	Non-methane hydrocarbon (C₂f1₈) sources and sinks around the Arabian Peninsula. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 7209-7232	6.8	17
148	Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem version 9-02. <i>Geoscientific Model Development</i> , 2019 , 12, 111-130	6.3	11
147	The community atmospheric chemistry box model CAABA/MECCA-4.0. <i>Geoscientific Model Development</i> , 2019 , 12, 1365-1385	6.3	34
146	Quantifying uncertainties due to chemistry modelling levaluation of tropospheric composition simulations in the CAMS model (cycle 43R1). <i>Geoscientific Model Development</i> , 2019 , 12, 1725-1752	6.3	15
145	Trend reversal from high-to-low and from rural-to-urban ozone concentrations over Europe. <i>Atmospheric Environment</i> , 2019 , 213, 25-36	5.3	24
144	Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7192-7197	11.5	215
143	Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. <i>European Heart Journal</i> , 2019 , 40, 1590-1596	9.5	349
142	Upper tropospheric CH₄ and CO affected by the South Asian summer monsoon during the Oxidation Mechanism Observations mission. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1915-1939	6.8	6
141	Revisiting the crop yield loss in India attributable to ozone. <i>Atmospheric Environment: X</i> , 2019 , 1, 10000	82.8	15
140	Acetone Atmospheric Distribution Retrieved From Space. <i>Geophysical Research Letters</i> , 2019 , 46, 2884-	2893	10
139	Global modeling of fungal spores with the EMAC chemistryclimate model: uncertainties in emission parametrizations and observations 2019 ,		1
138	Influence of Arctic stratospheric ozone on surface climate in CCMI models. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 9253-9268	6.8	9
137	Empirical evidence of a positive climate forcing of aerosols at elevated albedo. <i>Atmospheric Research</i> , 2019 , 229, 269-279	5.4	9
136	Diurnal variability, photochemical production and loss processes of hydrogen peroxide in the boundary layer over Europe. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 11953-11968	6.8	5

(2018-2019)

135	On the impact of future climate change on tropopause folds and tropospheric ozone. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14387-14401	6.8	11
134	Exploring the temporal trends and seasonal behaviour of tropospheric trace gases over Pakistan by exploiting satellite observations. <i>Atmospheric Environment</i> , 2019 , 198, 279-290	5.3	9
133	Long-term concentrations of fine particulate matter and impact on human health in Verona, Italy. <i>Atmospheric Pollution Research</i> , 2019 , 10, 731-738	4.5	26
132	Estimating health and economic benefits of reductions in air pollution from agriculture. <i>Science of the Total Environment</i> , 2018 , 622-623, 1304-1316	10.2	58
131	Temperature-(208B18 K) and pressure-(18B96 Torr) dependent rate coefficients for the reaction between OH and HNO₃. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2381-2394	6.8	14
130	Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models. <i>Environmental Research Letters</i> , 2018 , 13, 054024	6.2	30
129	ORACLE 2-D[(v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry limate model. <i>Geoscientific Model Development</i> , 2018 , 11, 3369-3389	6.3	15
128	The South Asian monsoon-pollution pump and purifier. <i>Science</i> , 2018 , 361, 270-273	33.3	63
127	Strong sesquiterpene emissions from Amazonian soils. <i>Nature Communications</i> , 2018 , 9, 2226	17.4	35
126	Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem 2018 ,		1
125	Uncertainties in estimates of mortality attributable to ambient PM 2.5 in Europe. <i>Environmental Research Letters</i> , 2018 , 13, 064029	6.2	12
124	Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0. <i>Geoscientific Model Development</i> , 2018 , 11, 4987-5001	6.3	1
123	Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53). <i>Geoscientific Model Development</i> , 2018 , 11, 4021-4041	6.3	8
122	Age of air as a diagnostic for transport timescales in global models. <i>Geoscientific Model Development</i> , 2018 , 11, 3109-3130	6.3	28
121	Model simulations of atmospheric methane and their evaluation using AGAGE/NOAA surface- and IAGOS-CARIBIC aircraft observations, 1997 2014 2018,		5
120	Oxidation processes in the Eastern Mediterranean atmosphere: Evidence from the Modelling of HO_x Measurements over Cyprus 2018 ,		1
119	Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HO_{<i>x</i>} measurements over Cyprus. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 10825-10847	6.8	22
118	Revised mineral dust emissions in the atmospheric chemistryllimate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch). <i>Geoscientific Model Development</i> , 2018 , 11, 989-1008	6.3	26

117	Analysis of European ozone trends in the period 1995\(\textstyle{0}\)014. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 5589-5605	6.8	52
116	Age-dependent health risk from ambient air pollution: a modelling and data analysis of childhood mortality in middle-income and low-income countries. <i>Lancet Planetary Health, The</i> , 2018 , 2, e292-e300	9.8	65
115	Global impact of monocyclic aromatics on tropospheric composition 2017,		1
114	Temperature (208B18 K) and pressure (18B96 Torr) dependent rate coefficients for the reaction between OH and HNO₃ 2017 ,		1
113	Impact of agricultural emission reductions on fine particulate matter and public health 2017,		1
112	Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC. <i>Atmospheric Environment</i> , 2017 , 162, 127-140	5.3	18
111	Influence of local production and vertical transport on the organic aerosol budget over Paris. Journal of Geophysical Research D: Atmospheres, 2017 , 122, 8276-8296	4.4	9
110	Aerosol Health Effects from Molecular to Global Scales. <i>Environmental Science & Environmental Science</i>	10.3	235
109	Tropopause Folds Over the Eastern Mediterranean and the Middle East in EMAC Simulations: Implications for Summertime Tropospheric Ozone. <i>Springer Atmospheric Sciences</i> , 2017 , 975-981	0.7	
108	Secondary ozone peaks in the troposphere over the Himalayas. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 6743-6757	6.8	17
107	Investigation of global particulate nitrate from the AeroCom phaseIIII experiment. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 12911-12940	6.8	58
106	WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 14393-14413	6.8	42
105	The influence of deep convection on HCHO and H₂2</sub>2</sub>0₂ in the upper troposphere over Europe. Atmospheric Chemistry and Physics, 2017 , 17, 11835-11848	6.8	3
104	Impact of agricultural emission reductions on fine-particulate matter and public health. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 12813-12826	6.8	95
103	Variations in O₃, CO, and CH₄ over the Bay of Bengal during the summer monsoon season: shipborne measurements and model simulations. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 257-275	6.8	24
102	Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 3799-3821	6.8	24
101	Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 385-402	6.8	36
100	Global impact of mineral dust on cloud droplet number concentration. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 5601-5621	6.8	42

Atmospheric chemistry, sources and sinks of carbon suboxide, 99 C<sub>3</sub>O<sub>2</sub>. Atmospheric Chemistry and Physics, 2017, 17, 8789-8804 4 98 Investigation of global nitrate from the AeroCom Phase III experiment 2017, The Impact of Fine Particulate Outdoor Air Pollution to Premature Mortality. Springer Atmospheric 0.7 97 5 Sciences, 2017, 1021-1026 The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO<sub>2</sub> from nadir-viewing satellites by weighted convolution. Atmospheric 96 4 Measurement Techniques, 2016, 9, 2753-2779 Aerosol optical depth trend over the Middle East 2016, 2 95 Implementing the US air quality standard for PM2.5 worldwide can prevent millions of premature 6 94 64 deaths per year. Environmental Health, 2016, 15, 88 On the role of tropopause folds in summertime tropospheric ozone over the eastern 6.8 93 42 Mediterranean and the Middle East. Atmospheric Chemistry and Physics, 2016, 16, 14025-14039 Effects of mineral dust on global atmospheric nitrate concentrations. Atmospheric Chemistry and 6.8 92 51 Physics, 2016, 16, 1491-1509 Projection of North Atlantic Oscillation and its effect on tracer transport. Atmospheric Chemistry 6.8 12 91 and Physics, 2016, 16, 15581-15592 Boundary layer evolution over the central Himalayas from radio wind profiler and model 6.8 90 simulations. Atmospheric Chemistry and Physics, 2016, 16, 10559-10572 Global tropospheric hydroxyl distribution, budget and reactivity. Atmospheric Chemistry and Physics, 6.8 89 173 **2016**, 16, 12477-12493 Ozone and carbon monoxide over India during the summer monsoon: regional emissions and 88 6.8 28 transport. Atmospheric Chemistry and Physics, 2016, 16, 3013-3032 87 Aerosol optical depth trend over the Middle East. Atmospheric Chemistry and Physics, 2016, 16, 5063-5076.8 117 Global atmospheric budget of simple monocyclic aromatic compounds. Atmospheric Chemistry and 6.8 86 38 Physics, 2016, 16, 6931-6947 Effects of convection and long-range transport on the distribution of carbon monoxide in the 85 16 4.5 troposphere over India. Atmospheric Pollution Research, 2016, 7, 775-785 Trend estimates of AERONET-observed and model-simulated AOTs between 1993 and 2013. 84 5.3 22 Atmospheric Environment, 2016, 125, 33-47 Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas 83 18.3 109 production. Nature Geoscience, 2016, 9, 490-495 Chemical aging of atmospheric mineral dust during transatlantic transport 2016, 82

81	Variations in O₃, CO, and CH₄ over the Bay of Bengal during the summer monsoon season: Ship-borne measurements and model simulations 2016 ,		1
80	Global tropospheric hydroxyl distribution, budget and reactivity 2016 ,		3
79	WRF-Chem simulated surface ozone over South Asia during the pre-monsoon: Effects of emission inventories and chemical mechanisms 2016 ,		3
78	Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version[2.51. <i>Geoscientific Model Development</i> , 2016 , 9, 1153-1200	6.3	153
77	Ozone air quality simulations with WRF-Chem (v3.5.1) over Europe: model evaluation and chemical mechanism comparison. <i>Geoscientific Model Development</i> , 2016 , 9, 3699-3728	6.3	39
76	The contribution of outdoor air pollution sources to premature mortality on a global scale. <i>Nature</i> , 2015 , 525, 367-71	50.4	2846
75	AOD trends during 2001 2010 from observations and model simulations. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5521-5535	6.8	97
74	Long-term (2001\(\mathbb{Q}\)012) concentrations of fine particulate matter (PM_{2.5}) and the impact on human health in Beijing, China. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5715-57:	2 6 .8	147
73	Hydrogen peroxide in the marine boundary layer over the South Atlantic during the OOMPH cruise in March 2007. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6971-6980	6.8	14
72	Revision of the convective transport module CVTRANS 2.4 in the EMAC atmospheric chemistrydlimate model. <i>Geoscientific Model Development</i> , 2015 , 8, 2435-2445	6.3	4
71	Description and implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy). <i>Geoscientific Model Development</i> , 2015 , 8, 453-471	6.3	5
7º	Modeled global effects of airborne desert dust on air quality and premature mortality. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 957-968	6.8	107
69	Model-simulated trend of surface carbon monoxide for the 2001\(\mathbb{Q}\)010 decade. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10465-10482	6.8	41
68	Global and regional impacts of HONO on the chemical composition of clouds and aerosols. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1167-1184	6.8	27
67	Profile information on CO from SCIAMACHY observations using cloud slicing and comparison with model simulations. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1717-1732	6.8	7
66	Summertime free-tropospheric ozone pool over the eastern Mediterranean/Middle East. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 115-132	6.8	90
65	The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP). <i>Geoscientific Model Development</i> , 2014 , 7, 2653-2662	6.3	45
64	ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere. <i>Geoscientific Model Development</i> , 2014 , 7, 3153-3172	6.3	46

(2010-2014)

63	Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century. <i>Regional Environmental Change</i> , 2014 , 14, 1937-1949	4.3	64
62	Impact of Different Physical Parameterizations on the Global Modeling of Desert Dust II Importance of the Initialization Fields. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , 2014 , 119-123	0.3	
61	Model calculated global, regional and megacity premature mortality due to air pollution. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7023-7037	6.8	145
60	Technical Note: Temporal change in averaging kernels as a source of uncertainty in trend estimates of carbon monoxide retrieved from MOPITT. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 11307-11316	6.8	16
59	Trend analysis in aerosol optical depths and pollutant emission estimates between 2000 and 2009. <i>Atmospheric Environment</i> , 2012 , 51, 75-85	5.3	95
58	EMAC model evaluation and analysis of atmospheric aerosol properties and distribution with a focus on the Mediterranean region. <i>Atmospheric Research</i> , 2012 , 114-115, 38-69	5.4	39
57	Does acetone react with HO₂ in the upper-troposphere?. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1339-1351	6.8	11
56	Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 11057-11083	6.8	61
55	Effects of business-as-usual anthropogenic emissions on air quality. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 6915-6937	6.8	66
54	Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 961-987	6.8	108
53	A high-resolution emission inventory of primary pollutants for the Huabei region, China. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 481-501	6.8	165
52	Influence of the North Atlantic Oscillation on air pollution transport. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 869-877	6.8	48
51	Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and Eastern China. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 6083-611	6 .8	30
50	The Atmosphere-Ocean General Circulation Model EMAC-MPIOM. <i>Geoscientific Model Development</i> , 2011 , 4, 771-784	6.3	21
49	Desert Dust Particle Distribution: From Global to Regional Scales. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , 2011 , 607-611	0.3	
48	Development cycle 2 of the Modular Earth Submodel System (MESSy2). <i>Geoscientific Model Development</i> , 2010 , 3, 717-752	6.3	293
47	Development cycle 2 of the Modular Earth Submodel System (MESSy2) 2010 ,		8
46	Assessing the effect of marine isoprene and ship emissions on ozone, using modelling and measurements from the South Atlantic Ocean. <i>Environmental Chemistry</i> , 2010 , 7, 171	3.2	23

45	Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5241-5255	6.8	182
44	Observed and simulated global distribution and budget of atmospheric C₂-C₅ alkanes. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4403-4422	6.8	85
43	Atmosphere-ocean ozone exchange: A global modeling study of biogeochemical, atmospheric, and waterside turbulence dependencies. <i>Global Biogeochemical Cycles</i> , 2009 , 23, n/a-n/a	5.9	73
42	Severe ozone air pollution in the Persian Gulf region. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 1393-1	€ 036	80
41	Corrigendum to "Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy)" published in Atmos. Chem. Phys., 6, 4617월632, 2006. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 9569-9569	6.8	5
40	The influence of the vertical distribution of emissions on tropospheric chemistry. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 9417-9432	6.8	47
39	Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere [] Part 1: Model description, sea salt aerosols and pH. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 5899-59	6 7 8	23
38	Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 1677-1687	6.8	49
37	Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 2527-2550	6.8	81
36	Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 2733-2757	6.8	84
35	The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 5067-5104	6.8	436
34	Technical Note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 5435-5444	6.8	61
33	Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy). <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 4617-4632	6.8	173
32	Influence of aromatics on tropospheric gas-phase composition		2
31	Does acetone react with HO ₂ in the upper-troposphere?		1
30	Global distribution of the effective aerosol hygroscopicity parameter for CCN activation		1
29	Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and Eastern China		3
28	Aerosol simulation applying high resolution anthropogenic emissions with the EMAC chemistry-climate model		2

27	New parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC	1
26	CO profiles from SCIAMACHY observations using cloud slicing and comparison with model simulations	2
25	Summertime free tropospheric ozone pool over the Eastern Mediterranean/Middle East	4
24	Modeled global effects of airborne desert dust on air quality and premature mortality	5
23	Model calculated global, regional and megacity premature mortality due to air pollution	2
22	Model simulated trend of surface carbon monoxide for the 2001🛭 010 decade	1
21	AOD trends during 2001 2010 from observations and model simulations	2
20	Long-term (2001🛮 012) fine particulate matter (PM _{2.5}) and the impact on human health in Beijing, China	6
19	Effects of mineral dust on global atmospheric nitrate concentrations	2
18	Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport	3
17	North Atlantic Oscillation model projections and influence on tracer transport	1
16	The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere	8
15	Technical note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species	2
14	Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM!	S/M <u>E</u> SSy1
13	Severe ozone air pollution in the Persian Gulf region	1
12	C ₃ -C ₅ alkanes in the atmosphere: concentration, seasonal cycle and contribution to the atmospheric budgets of acetone and acetaldehyde	1
11	Age of Air as a diagnostic for transport time-scales in global models	3
10	The atmosphere-ocean general circulation model EMAC-MPIOM	2

9	The implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)	1
8	Earth System Chemistry Integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy, version 2.51)	6
7	Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations	1
6	Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere, Part I: model description, sea salt aerosols and pH	1
5	ORACLE: a module for the description of ORganic Aerosol Composition and Evolution in the atmosphere	1
4	The photolysis module JVAL-13.99gmdd, compatible with the MESSy standard, and the JVal PreProcessor (JVPP)	1
3	Luftverschmutzung als wichtiger Kofaktor bei COVID-19-Sterbefflen. <i>Kardiologe</i> ,1 0.6	
2	Supplementary material to "Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and West Africa"	2
1	Impact of reduced emissions on direct and indirect aerosol radiative forcing during COVID¶9 lockdown in Europe	4