Andrea Pozzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8349472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015, 525, 367-371.	27.8	4,052
2	Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. European Heart Journal, 2019, 40, 1590-1596.	2.2	570
3	The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmospheric Chemistry and Physics, 2006, 6, 5067-5104.	4.9	528
4	Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7192-7197.	7.1	515
5	Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovascular Research, 2020, 116, 1910-1917.	3.8	427
6	Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geoscientific Model Development, 2010, 3, 717-752.	3.6	398
7	Aerosol Health Effects from Molecular to Global Scales. Environmental Science & Technology, 2017, 51, 13545-13567.	10.0	384
8	Regional and global contributions of air pollution to risk of death from COVID-19. Cardiovascular Research, 2020, 116, 2247-2253.	3.8	262
9	Global tropospheric hydroxyl distribution, budget and reactivity. Atmospheric Chemistry and Physics, 2016, 16, 12477-12493.	4.9	255
10	Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. Atmospheric Chemistry and Physics, 2010, 10, 5241-5255.	4.9	230
11	Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy). Atmospheric Chemistry and Physics, 2006, 6, 4617-4632.	4.9	216
12	Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) versionÂ2.51. Geoscientific Model Development, 2016, 9, 1153-1200.	3.6	208
13	A high-resolution emission inventory of primary pollutants for the Huabei region, China. Atmospheric Chemistry and Physics, 2012, 12, 481-501.	4.9	196
14	Long-term (2001–2012) concentrations of fine particulate matter (PM _{2.5}) and the impact on human health in Beijing, China. Atmospheric Chemistry and Physics, 2015, 15, 5715-5725.	4.9	181
15	Model calculated global, regional and megacity premature mortality due to air pollution. Atmospheric Chemistry and Physics, 2013, 13, 7023-7037.	4.9	179
16	Aerosol optical depth trend over the Middle East. Atmospheric Chemistry and Physics, 2016, 16, 5063-5073.	4.9	163
17	Impact of agricultural emission reductions on fine-particulate matter and public health. Atmospheric Chemistry and Physics, 2017, 17, 12813-12826.	4.9	160
18	Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nature Geoscience, 2016, 9, 490-495.	12.9	149

#	Article	IF	CITATIONS
19	Modeled global effects of airborne desert dust on air quality and premature mortality. Atmospheric Chemistry and Physics, 2014, 14, 957-968.	4.9	138
20	Summertime free-tropospheric ozone pool over the eastern Mediterranean/Middle East. Atmospheric Chemistry and Physics, 2014, 14, 115-132.	4.9	131
21	Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model. Atmospheric Chemistry and Physics, 2012, 12, 961-987.	4.9	130
22	On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. Scientific Reports, 2020, 10, 5862.	3.3	125
23	AOD trends during 2001–2010 from observations and model simulations. Atmospheric Chemistry and Physics, 2015, 15, 5521-5535.	4.9	123
24	Trend analysis in aerosol optical depths and pollutant emission estimates between 2000 and 2009. Atmospheric Environment, 2012, 51, 75-85.	4.1	110
25	Estimating health and economic benefits of reductions in air pollution from agriculture. Science of the Total Environment, 2018, 622-623, 1304-1316.	8.0	106
26	Severe ozone air pollution in the Persian Gulf region. Atmospheric Chemistry and Physics, 2009, 9, 1393-1406.	4.9	105
27	Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1. Atmospheric Chemistry and Physics, 2007, 7, 2733-2757.	4.9	104
28	Observed and simulated global distribution and budget of atmospheric C ₂ -C ₅ alkanes. Atmospheric Chemistry and Physics, 2010, 10, 4403-4422.	4.9	104
29	Investigation of global particulate nitrate from the AeroCom phaseÂIII experiment. Atmospheric Chemistry and Physics, 2017, 17, 12911-12940.	4.9	99
30	Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations. Atmospheric Chemistry and Physics, 2007, 7, 2527-2550.	4.9	95
31	Age-dependent health risk from ambient air pollution: a modelling and data analysis of childhood mortality in middle-income and low-income countries. Lancet Planetary Health, The, 2018, 2, e292-e300.	11.4	92
32	Implementing the US air quality standard for PM2.5 worldwide can prevent millions of premature deaths per year. Environmental Health, 2016, 15, 88.	4.0	91
33	The South Asian monsoon—pollution pump and purifier. Science, 2018, 361, 270-273.	12.6	85
34	Atmosphereâ€ocean ozone exchange: A global modeling study of biogeochemical, atmospheric, and waterside turbulence dependencies. Global Biogeochemical Cycles, 2009, 23, .	4.9	83
35	Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century. Regional Environmental Change, 2014, 14, 1937-1949.	2.9	81
36	Technical Note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species. Atmospheric Chemistry and Physics, 2006, 6, 5435-5444.	4.9	79

Andrea Pozzer

#	Article	IF	CITATIONS
37	Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties. Atmospheric Chemistry and Physics, 2012, 12, 11057-11083.	4.9	77
38	Analysis of European ozone trends in the period 1995–2014. Atmospheric Chemistry and Physics, 2018, 18, 5589-5605.	4.9	77
39	Effects of business-as-usual anthropogenic emissions on air quality. Atmospheric Chemistry and Physics, 2012, 12, 6915-6937.	4.9	76
40	Ozone air quality simulations with WRF-Chem (v3.5.1) over Europe: model evaluation and chemical mechanism comparison. Geoscientific Model Development, 2016, 9, 3699-3728.	3.6	73
41	On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East. Atmospheric Chemistry and Physics, 2016, 16, 14025-14039.	4.9	71
42	Ubiquitous atmospheric production of organic acids mediated by cloud droplets. Nature, 2021, 593, 233-237.	27.8	71
43	Effects of mineral dust on global atmospheric nitrate concentrations. Atmospheric Chemistry and Physics, 2016, 16, 1491-1509.	4.9	68
44	Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols. Environment International, 2022, 159, 107020.	10.0	68
45	Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER. Atmospheric Chemistry and Physics, 2008, 8, 1677-1687.	4.9	65
46	WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms. Atmospheric Chemistry and Physics, 2017, 17, 14393-14413.	4.9	65
47	ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere. Geoscientific Model Development, 2014, 7, 3153-3172.	3.6	60
48	Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide. Atmospheric Chemistry and Physics, 2017, 17, 385-402.	4.9	60
49	The influence of the vertical distribution of emissions on tropospheric chemistry. Atmospheric Chemistry and Physics, 2009, 9, 9417-9432.	4.9	59
50	Influence of the North Atlantic Oscillation on air pollution transport. Atmospheric Chemistry and Physics, 2012, 12, 869-877.	4.9	59
51	Global impact of mineral dust on cloud droplet number concentration. Atmospheric Chemistry and Physics, 2017, 17, 5601-5621.	4.9	59
52	The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP). Geoscientific Model Development, 2014, 7, 2653-2662.	3.6	55
53	Strong sesquiterpene emissions from Amazonian soils. Nature Communications, 2018, 9, 2226.	12.8	55
54	The community atmospheric chemistry box model CAABA/MECCA-4.0. Geoscientific Model Development, 2019, 12, 1365-1385.	3.6	54

#	Article	IF	CITATIONS
55	EMAC model evaluation and analysis of atmospheric aerosol properties and distribution with a focus on the Mediterranean region. Atmospheric Research, 2012, 114-115, 38-69.	4.1	48
56	Global atmospheric budget of simple monocyclic aromatic compounds. Atmospheric Chemistry and Physics, 2016, 16, 6931-6947.	4.9	48
57	Model-simulated trend of surface carbon monoxide for the 2001–2010 decade. Atmospheric Chemistry and Physics, 2014, 14, 10465-10482.	4.9	47
58	Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations. Atmospheric Chemistry and Physics, 2016, 16, 10559-10572.	4.9	44
59	Age of air as a diagnostic for transport timescales in global models. Geoscientific Model Development, 2018, 11, 3109-3130.	3.6	44
60	Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2020, 20, 6769-6787.	4.9	43
61	Trend reversal from high-to-low and from rural-to-urban ozone concentrations over Europe. Atmospheric Environment, 2019, 213, 25-36.	4.1	40
62	Revised mineral dust emissions in the atmospheric chemistry–climate model EMAC (MESSy 2.52) Tj ETQq0 0 C) rgBT /Ov	erlggk 10 Tf 5
63	Long-term concentrations of fine particulate matter and impact on human health in Verona, Italy. Atmospheric Pollution Research, 2019, 10, 731-738.	3.8	39
64	Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport. Atmospheric Chemistry and Physics, 2016, 16, 3013-3032.	4.9	38
65	Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models. Environmental Research Letters, 2018, 13, 054024.	5.2	38
66	Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and Eastern China. Atmospheric Chemistry and Physics, 2011, 11, 6083-6114.	4.9	37
67	Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HO _{<i>x</i>} measurements over Cyprus. Atmospheric Chemistry and Physics, 2018, 18, 10825-10847.	4.9	35
68	Non-methane hydrocarbon (C ₂ –C ₈) sources and sinks around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2019, 19, 7209-7232.	4.9	35
69	Quantifying uncertainties due to chemistry modelling – evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1). Geoscientific Model Development, 2019, 12, 1725-1752.	3.6	33
70	Changing risk factors that contribute to premature mortality from ambient air pollution between 2000 and 2015. Environmental Research Letters, 2020, 15, 074010.	5.2	33
71	Global and regional impacts of HONO on the chemical composition of clouds and aerosols. Atmospheric Chemistry and Physics, 2014, 14, 1167-1184.	4.9	32
72	Variations in O ₃ , CO, and CH ₄ over the Bay of Bengal during the summer monsoon season: shipborne measurements and model simulations. Atmospheric Chemistry and Physics, 2017, 17, 257-275.	4.9	32

#	Article	IF	CITATIONS
73	Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes. Atmospheric Chemistry and Physics, 2017, 17, 3799-3821.	4.9	31
74	Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 1: Model description, sea salt aerosols and pH. Atmospheric Chemistry and Physics, 2008, 8, 5899-5917.	4.9	30
75	The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO ₂ from nadir-viewing satellites by weighted convolution. Atmospheric Measurement Techniques, 2016, 9, 2753-2779.	3.1	27
76	Trend estimates of AERONET-observed and model-simulated AOTs between 1993 and 2013. Atmospheric Environment, 2016, 125, 33-47.	4.1	27
77	Assessing the effect of marine isoprene and ship emissions on ozone, using modelling and measurements from the South Atlantic Ocean. Environmental Chemistry, 2010, 7, 171.	1.5	26
78	On the impact of future climate change on tropopause folds and tropospheric ozone. Atmospheric Chemistry and Physics, 2019, 19, 14387-14401.	4.9	26
79	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	27.8	26
80	Secondary ozone peaks in the troposphere over the Himalayas. Atmospheric Chemistry and Physics, 2017, 17, 6743-6757.	4.9	25
81	Revisiting the crop yield loss in India attributable to ozone. Atmospheric Environment: X, 2019, 1, 100008.	1.4	25
82	Global and national assessment of the incidence of asthma in children and adolescents from major sources of ambient NO ₂ . Environmental Research Letters, 2021, 16, 035020.	5.2	25
83	ORACLE 2-DÂ(v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model. Geoscientific Model Development, 2018, 11, 3369-3389.	3.6	24
84	Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon. Atmospheric Chemistry and Physics, 2019, 19, 11587-11612.	4.9	24
85	A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. Atmospheric Chemistry and Physics, 2020, 20, 1341-1361.	4.9	24
86	The Red Sea Deep Water is a potent source of atmospheric ethane and propane. Nature Communications, 2020, 11, 447.	12.8	24
87	The Atmosphere-Ocean General Circulation Model EMAC-MPIOM. Geoscientific Model Development, 2011, 4, 771-784.	3.6	22
88	Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC. Atmospheric Environment, 2017, 162, 127-140.	4.1	22
89	Impact of U.S. Oil and Natural Gas Emission Increases on Surface Ozone Is Most Pronounced in the Central United States. Environmental Science & amp; Technology, 2020, 54, 12423-12433.	10.0	21
90	Effects of spatial resolution on WRF v3.8.1 simulated meteorology over the central Himalaya. Geoscientific Model Development, 2021, 14, 1427-1443.	3.6	21

Andrea Pozzer

#	Article	IF	CITATIONS
91	Uncertainties in estimates of mortality attributable to ambient PM 2.5 in Europe. Environmental Research Letters, 2018, 13, 064029.	5.2	20
92	Exploring the temporal trends and seasonal behaviour of tropospheric trace gases over Pakistan by exploiting satellite observations. Atmospheric Environment, 2019, 198, 279-290.	4.1	20
93	Effects of convection and long-range transport on the distribution of carbon monoxide in the troposphere over India. Atmospheric Pollution Research, 2016, 7, 775-785.	3.8	19
94	Influence of aromatics on tropospheric gas-phase composition. Atmospheric Chemistry and Physics, 2021, 21, 2615-2636.	4.9	19
95	Spatial Distribution of PM _{2.5} â€Related Premature Mortality in China. GeoHealth, 2021, 5, e2021GH000532.	4.0	19
96	Technical Note: Temporal change in averaging kernels as a source of uncertainty in trend estimates of carbon monoxide retrieved from MOPITT. Atmospheric Chemistry and Physics, 2013, 13, 11307-11316.	4.9	18
97	Temperature-(208–318 K) and pressure-(18–696 Torr) dependent rate coefficients for the reaction between OH and HNO ₃ . Atmospheric Chemistry and Physics, 2018, 18, 2381-2394.	4.9	18
98	Acetone Atmospheric Distribution Retrieved From Space. Geophysical Research Letters, 2019, 46, 2884-2893.	4.0	18
99	Hydrogen peroxide in the marine boundary layer over the South Atlantic during the OOMPH cruise in March 2007. Atmospheric Chemistry and Physics, 2015, 15, 6971-6980.	4.9	17
100	Clobal tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem versionÂ9-02. Geoscientific Model Development, 2019, 12, 111-130.	3.6	16
101	How alkaline compounds control atmospheric aerosol particle acidity. Atmospheric Chemistry and Physics, 2021, 21, 14983-15001.	4.9	16
102	Influence of Arctic stratospheric ozone on surface climate in CCMI models. Atmospheric Chemistry and Physics, 2019, 19, 9253-9268.	4.9	15
103	Projection of North Atlantic Oscillation and its effect on tracer transport. Atmospheric Chemistry and Physics, 2016, 16, 15581-15592.	4.9	14
104	Empirical evidence of a positive climate forcing of aerosols at elevated albedo. Atmospheric Research, 2019, 229, 269-279.	4.1	14
105	Upper tropospheric CH ₄ and CO affected by the South Asian summer monsoon during the Oxidation Mechanism Observations mission. Atmospheric Chemistry and Physics, 2019, 19, 1915-1939.	4.9	14
106	Diurnal variability, photochemical production and loss processes of hydrogen peroxide in the boundary layer over Europe. Atmospheric Chemistry and Physics, 2019, 19, 11953-11968.	4.9	14
107	On the link between the Etesian winds, tropopause folds and tropospheric ozone over the Eastern Mediterranean during summer. Atmospheric Research, 2021, 248, 105161.	4.1	14
108	Measurements of carbonyl compounds around the Arabian Peninsula: overview and model comparison. Atmospheric Chemistry and Physics, 2020, 20, 10807-10829.	4.9	14

#	Article	IF	CITATIONS
109	Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel. Geoscientific Model Development, 2022, 15, 2673-2710.	3.6	13
110	Influence of local production and vertical transport on the organic aerosol budget over Paris. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8276-8296.	3.3	12
111	Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53). Geoscientific Model Development, 2018, 11, 4021-4041.	3.6	12
112	Natural sea-salt emissions moderate the climate forcing of anthropogenic nitrate. Atmospheric Chemistry and Physics, 2020, 20, 771-786.	4.9	12
113	A Global Climatology of Tropopause Folds in CAMS and MERRAâ€2 Reanalyses. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034115.	3.3	12
114	Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa. Atmospheric Chemistry and Physics, 2021, 21, 8195-8211.	4.9	12
115	Does acetone react with HO ₂ in the upper-troposphere?. Atmospheric Chemistry and Physics, 2012, 12, 1339-1351.	4.9	11
116	Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe. Atmospheric Chemistry and Physics, 2022, 22, 8683-8699.	4.9	11
117	Profile information on CO from SCIAMACHY observations using cloud slicing and comparison with model simulations. Atmospheric Chemistry and Physics, 2014, 14, 1717-1732.	4.9	9
118	Kinetics of the OH + NO ₂ reaction: effect of water vapour a new parameterization for global modelling. Atmospheric Chemistry and Physics, 2020, 20, 3091-3105.	and 4.9	9
119	Description and implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy). Geoscientific Model Development, 2015, 8, 453-471.	3.6	8
120	The influence of deep convection on HCHO and H ₂ O ₂ in the upper troposphere over Europe. Atmospheric Chemistry and Physics, 2017, 17, 11835-11848.	4.9	8
121	Effects of Dry Deposition on Surface Ozone over South Asia Inferred from a Regional Chemical Transport Model. ACS Earth and Space Chemistry, 2020, 4, 321-327.	2.7	8
122	Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models. Atmospheric Chemistry and Physics, 2021, 21, 3725-3740.	4.9	8
123	The impact of organic pollutants from Indonesian peatland fires on the tropospheric and lower stratospheric composition. Atmospheric Chemistry and Physics, 2021, 21, 11257-11288.	4.9	8
124	Impact of the South Asian monsoon outflow on atmospheric hydroperoxides in the upper troposphere. Atmospheric Chemistry and Physics, 2020, 20, 12655-12673.	4.9	8
125	Revision of the convective transport module CVTRANS 2.4 in the EMAC atmospheric chemistry–climate model. Geoscientific Model Development, 2015, 8, 2435-2445.	3.6	7
126	Cold cloud microphysical process rates in a global chemistry–climate model. Atmospheric Chemistry and Physics, 2021, 21, 1485-1505.	4.9	7

#	ARTICLE	IF	CITATIONS
127	Corrigendum to "Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy)" published in Atmos. Chem. Phys., 6, 4617–4632, 2006. Atmospheric Chemistry and Physics, 2009, 9, 9569-9569.	4.9	6
128	Atmospheric chemistry, sources and sinks of carbon suboxide, C ₃ O ₂ . Atmospheric Chemistry and Physics, 2017, 17, 8789-8804.	4.9	6
129	A modeling study of the regional representativeness of surface ozone variation at the WMO/GAW background stations in China. Atmospheric Environment, 2020, 242, 117672.	4.1	6
130	Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe. Atmospheric Chemistry and Physics, 2022, 22, 6151-6165.	4.9	6
131	Model simulations of atmospheric methane (1997–2016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations. Atmospheric Chemistry and Physics, 2020, 20, 5787-5809.	4.9	5
132	Impact of non-ideality on reconstructing spatial and temporal variations in aerosol acidity with multiphase buffer theory. Atmospheric Chemistry and Physics, 2022, 22, 47-63.	4.9	4
133	A process-oriented evaluation of CAMS reanalysis ozone during tropopause folds over Europe for the period 2003–2018. Atmospheric Chemistry and Physics, 2022, 22, 6275-6289.	4.9	4
134	Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0. Geoscientific Model Development, 2018, 11, 4987-5001.	3.6	3
135	Inappropriate evaluation of methodology and biases by P. Morfeld and T.C. Erren. Cardiovascular Research, 2020, 116, e102-e102.	3.8	3
136	Kinetics of OH + SO ₂ + M: temperature-dependent coefficients in the fall-off regime and the influence of water vapour. Atmospheric Chemistry and Physics, 2022, 22, 4969-4984.	rate 4.9	3
137	Evaluation of the coupled high-resolution atmospheric chemistry model system MECO(n) using in situ and MAX-DOAS NO ₂ measurements. Atmospheric Measurement Techniques, 2021, 14, 5241-5269.	3.1	2
138	Impact of pyruvic acid photolysis on acetaldehyde and peroxy radical formation in the boreal forest: theoretical calculations and model results. Atmospheric Chemistry and Physics, 2021, 21, 14333-14349.	4.9	1
139	The Impact of High-Resolution SRTM Topography and Corine Land Cover on Lightning Calculations in WRF. Atmosphere, 2022, 13, 1050.	2.3	1
140	Global health burden of PM2.5, black and organic carbon aerosols. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
141	About right: references in open-access EGU (European Geosciences Union) journals. Geoscience Communication, 2021, 4, 453-460.	0.9	0
142	Desert Dust Particle Distribution: From Global to Regional Scales. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 607-611.	0.2	0