Gino Putrino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/834945/publications.pdf

Version: 2024-02-01

		1163117	996975
32	311	8	15
papers	citations	h-index	g-index
33	33	33	528
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Optical Microelectromechanical Systems Technologies for Spectrally Adaptive Sensing and Imaging. Advanced Functional Materials, 2022, 32, 2103153.	14.9	7
2	Mechanical properties of thermally evaporated germanium (Ge) and barium fluoride (BaF2) thin-films. MRS Communications, 2022, 12, 112-118.	1.8	2
3	Analytic approximation for the collapse of viscous tubes driven by surface tension and pressure difference. Archive of Applied Mechanics, 2022, 92, 1571.	2.2	O
4	MEMS for multispectral imaging. , 2022, , .		1
5	Large-area narrowband Fabry–Pérot interferometers for long-wavelength infrared spectral sensing. Journal of Optical Microsystems, 2022, 2, .	1.5	2
6	Pattern transferring of Prolift-100 polymer sacrificial layers with controlled sidewall profile. Journal of Micromechanics and Microengineering, 2021, 31, 075001.	2.6	0
7	Method for Increasing the Core Count and Area of High Density Optical Fiber Bundles. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-8.	2.9	46
8	MEMS based hydrogen sensing with parts-per-billion resolution. Sensors and Actuators B: Chemical, 2019, 281, 335-342.	7.8	18
9	Atomic force microscopy with integrated on-chip interferometric readout. Ultramicroscopy, 2019, 205, 75-83.	1.9	8
10	Large Area Silicon-Air-Silicon DBRs for Infrared Filter Applications. Journal of Lightwave Technology, 2019, 37, 769-779.	4.6	11
11	Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing. Nanotechnology, 2019, 30, 085503.	2.6	40
12	Ultrathin tunable terahertz absorbers based on electrostatically actuated metamaterial., 2019,,.		0
13	Method for optical modelling of non-uniform and non-parallel multi-thin film MEMS optical filters and mirrors. , 2018 , , .		O
14	Modelling and Charactrization of the MEMS based filters for the spectroscopic imaging applications. , 2018, , .		1
15	MEMS-based Low SWaP Solutions for Multi/Hyperspectral Infrared Sensing and Imaging. , 2018, , .		1
16	A High Deposition Rate Amorphous-Silicon Process for Use as a Thick Sacrificial Layer in Surface-Micromachining. Journal of Microelectromechanical Systems, 2017, 26, 406-414.	2.5	4
17	Control of Sidewall Profile in Dry Plasma Etching of Polyimide. Journal of Microelectromechanical Systems, 2017, 26, 593-600.	2.5	7
18	Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial. Microsystems and Nanoengineering, 2017, 3, 17033.	7.0	84

#	Article	IF	CITATIONS
19	Fast Tunable Terahertz Absorber Based on a MEMS-driven Metamaterial. , 2017, , .		1
20	An optical MEMS cross-bar switch. , 2016, , .		0
21	On-chip read-out of picomechanical motion under ambient conditions. Nanoscale, 2015, 7, 1927-1933.	5.6	14
22	Microcantilevers as a platform for the detection of hydrogen. , 2014, , .		0
23	Capturing the impulse response of a second order system. , 2014, , .		O
24	Low temperature through-wafer reactive ion etching for MEMS. , 2014, , .		0
25	An optically resonant position read-out system for MEMS gas sensors. , 2014, , .		O
26	Mercury–Cadmium–Telluride Waveguides – A Novel Strategy for On-Chip Mid-Infrared Sensors. Analytical Chemistry, 2013, 85, 10648-10652.	6.5	41
27	Demonstration of a method for detecting MEMS suspended beam height. , 2012, , .		O
28	A WDM Capable Integrated Optical Readout of a MEMS Sensor. Procedia Engineering, 2012, 47, 386-389.	1.2	0
29	An optically resonant, grating-based technique for the sensitive detection of MEMS cantilever beam height. , 2012, , .		O
30	Integrated Resonant Optical Readout Applicable to Large Arrays of MEMS Beams. IEEE Photonics Technology Letters, 2012, 24, 2243-2246.	2.5	6
31	Model and Analysis of a High Sensitivity Resonant Optical Read-Out Approach Suitable for Cantilever Sensor Arrays. Journal of Lightwave Technology, 2012, 30, 1863-1868.	4.6	17
32	Comparison of dynamic and static operation of a novel optical read-out technology for micromachined cantilever sensors. , 2010, , .		0