Magdalena Popczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8349261/publications.pdf

Version: 2024-02-01

1039406 996533 74 293 9 15 g-index citations h-index papers 74 74 74 254 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Electrochemical properties of Ni?P electrode materials modified with nickel oxide and metallic cobalt powders. International Journal of Hydrogen Energy, 2005, 30, 265-271.	3.8	55
2	Production and properties of composite layers based on an NiÂP amorphous matrix. Nanotechnology, 2003, 14, 341-346.	1.3	29
3	Structure and corrosion resistance of nickel coatings containing tungsten and silicon powders. Materials Characterization, 2007, 58, 371-375.	1.9	20
4	Corrosion Resistance of Heat-Treated Ni-W Alloy Coatings. Materials, 2020, 13, 1172.	1.3	20
5	The influence of molybdenum and silicon on activity of Ni + W composite coatings in the hydrogen evolution reaction. Surface and Interface Analysis, 2008, 40, 246-249.	0.8	16
6	Structure and electrochemical characterization of electrolytic Ni+Mo+Si composite coatings in an alkaline solution. Electrochimica Acta, 2006, 51, 6140-6144.	2.6	15
7	Electrolytic deposition and corrosion resistance of Zn-Ni coatings obtained from sulphate-chloride bath. Bulletin of Materials Science, 2011, 34, 997-1001.	0.8	14
8	Application of the Scanning Kelvin Probe Technique for Characterization of Corrosion Interfaces. Solid State Phenomena, 0, 228, 369-382.	0.3	11
9	Localized Electrochemical Impedance Spectroscopy for Studying the Corrosion Processes in a Nanoscale. Solid State Phenomena, 2015, 228, 383-393.	0.3	11
10	The Hydrogen Evolution Reaction on Electrolytic Nickel-Based Coatings Containing Metallic Molybdenum. Materials Science Forum, 0, 636-637, 1036-1041.	0.3	10
11	The electrodeposition and properties of Zn-Ni + Ni composite coatings. Russian Journal of Electrochemistry, 2012, 48, 1123-1129.	0.3	9
12	Influence of thermal treatment on the corrosion resistance of electrolytic Zn–Ni+Ni composite coatings. Advanced Composite Materials, 2015, 24, 431-438.	1.0	7
13	The Influence of Current Density of Electrodeposition on the Electrochemical Properties of Ni-Mo Alloy Coatings. Solid State Phenomena, 2015, 228, 269-272.	0.3	6
14	Impact of Acidity Profile on Nascent Polyaniline in the Modified Rapid Mixing Processâ€"Material Electrical Conductivity and Morphological Study. Materials, 2020, 13, 5108.	1.3	6
15	Intermetallic Compounds as Catalysts in the Reaction of Electroevolution/Absorption of Hydrogen. Solid State Phenomena, 2015, 228, 16-22.	0.3	5
16	Use of Scanning Vibrating Electrode Technique to Localized Corrosion Evaluation. Solid State Phenomena, 0, 228, 353-368.	0.3	5
17	Structure and Electrochemical Characterization of Electrolytic Ni-Co-P and Ni-W-P Layers. Materials Science Forum, 2006, 514-516, 460-464.	0.3	4
18	Influence of Surface Development of Ni/W Coatings on the Kinetics of the Electrolytic Hydrogen Evolution. Solid State Phenomena, 2015, 228, 293-298.	0.3	4

#	Article	IF	CITATIONS
19	Electrodeposition and Thermal Treatment of Nickel Coatings Containing Molybdenum and Silicon. Materials Science Forum, 2006, 514-516, 1182-1185.	0.3	3
20	Structure and Electrochemical Characterization of Ni+W+Si Composite Coatings in an Alkaline Solution. Materials Science Forum, 2008, 587-588, 815-819.	0.3	3
21	Structure and Corrosion Resistance of Zn-Ni and Zn-Ni-W Coatings. Materials Science Forum, 0, 636-637, 1042-1046.	0.3	3
22	Influence of thermal treatment on the corrosion resistance of electrolytic Zn-Ni coatings. Materials Science-Poland, 2011, 29, 177-183.	0.4	3
23	Structure and Resistance to Electrochemical Corrosion of NiTi Alloy. Solid State Phenomena, 0, 203-204, 335-338.	0.3	3
24	New Kind of Polymer Materials Based on Selected Complexing Star-Shaped Polyethers. Polymers, 2019, 11, 1554.	2.0	3
25	The Evaluation of Simulated Environmental Degradation of Polycarbonate Filled with Inorganic and Organic Reinforcements. Polymers, 2021, 13, 3572.	2.0	3
26	On the Use of the Scanning Electrochemical Microscopy in Corrosion Research. Solid State Phenomena, 0, 228, 394-409.	0.3	2
27	A Coulometric Method by Local Anodic Dissolution for Measuring the Thickness of Ni/Cu Multi-Layer Electrocoatings. Solid State Phenomena, 0, 228, 319-324.	0.3	2
28	Effect of Phosphorus on the Structure of Nickel Electrocoatings. Solid State Phenomena, 0, 228, 141-147.	0.3	2
29	Electrodeposition of the Ni+MoS ₂ Composite Electrocatalysts. Solid State Phenomena, 2015, 228, 125-131.	0.3	2
30	Electrolytic production and characterization of nickel–rhenium alloy coatings. Reviews on Advanced Materials Science, 2021, 60, 784-793.	1.4	2
31	Comparison of Electrochemical Properties of Ni+NiAl and Ni Coatings in an Alkaline Solution. Solid State Phenomena, 0, 228, 258-262.	0.3	1
32	Effect of Molybdenum(IV) Oxide on the Process of Hydrogen Evolution on Ni+Mo Electrolytic Composite Coatings. Solid State Phenomena, 2015, 228, 277-282.	0.3	1
33	Electrochemical Characterization of Nickel-Phosphorus Based Coatings Containing Cobalt. Solid State Phenomena, 2015, 228, 299-304.	0.3	1
34	Multi-Phased Electrode Materials for the Electroevolution of Oxygen. Solid State Phenomena, 2015, 228, 23-31.	0.3	1
35	Influence of Thermal Treatment on the Electrochemical Properties of Ni+Mo Composite Coatings in an Alkaline Solution. Solid State Phenomena, 0, 228, 231-236.	0.3	1
36	Effect of Molybdenum Powder Granulation on Electrochemical Properties of Ni+Mo Composite Coatings. Solid State Phenomena, 2015, 228, 288-292.	0.3	1

#	Article	IF	CITATIONS
37	Production and Structure of Ni-W and Ni+W Coatings. Solid State Phenomena, 2015, 228, 153-157.	0.3	1
38	The Hydrogen Evolution Reaction on Fe Electrode Material in 1 M NaOH Solution. Solid State Phenomena, 2015, 228, 252-257.	0.3	1
39	Effect of Heat Treatment on the Structure of Ni-P Electrocoatings. Solid State Phenomena, 0, 228, 148-152.	0.3	1
40	Electrodeposition of the Ni-Mo+MoO ₂ Composite Electrocoatings. Solid State Phenomena, 0, 228, 132-137.	0.3	1
41	DC Current Electrodeposition of High Mo Content Ni-Mo Alloy Coatings from Alkaline Solutions. Solid State Phenomena, 2015, 228, 116-124.	0.3	1
42	Effect of Phosphorus on the Corrosion Resistance of Nickel Electrocoatings. Solid State Phenomena, 2015, 228, 310-316.	0.3	1
43	New Ni-Me-P Electrode Materials. Solid State Phenomena, 2015, 228, 39-48.	0.3	1
44	Evaluation of Structure and Corrosion Behavior of FeAl Alloy after Crystallization, Hot Extrusion and Hot Rolling. Materials, 2020, 13, 2041.	1.3	1
45	The Use of ZrO2 Waste for the Electrolytic Production of Composite Ni–P–ZrO2 Powder. Materials, 2021, 14, 6597.	1.3	1
46	Influence of Thermal Treatment on the Structure and the Corrosion Resistance of Zn-Ni Alloy Coatings. Solid State Phenomena, 2013, 203-204, 224-227.	0.3	0
47	Structure and Properties of Electrolytic Zn-Mn Coatings Deposited by the Galvanostatic Method. Solid State Phenomena, 0, 203-204, 216-219.	0.3	O
48	Electrolytic Production and Structure of Ni+Al+Ti Composite Coatings. Solid State Phenomena, 0, 228, 168-171.	0.3	0
49	Physical and Chemical Characterization of Ni+MoO ₂ Composite Electrocoatings. Solid State Phenomena, 0, 228, 58-62.	0.3	0
50	Production and Structure of Nickel-Phosphorus Electrolytic Coatings Modified with Metallic Tungsten or Nickel Oxide. Solid State Phenomena, 2015, 228, 163-167.	0.3	0
51	Quantitative Methods Used to Describe the Structure of Iron. Solid State Phenomena, 2015, 228, 325-332.	0.3	0
52	Influence of Thermal Treatment on the Electrochemical Properties of Ni+W+Mo+Si Composite Coatings in an Alkaline Solution. Solid State Phenomena, 0, 228, 305-309.	0.3	0
53	Aims of Electrocatalysis. Solid State Phenomena, 0, 228, 179-186.	0.3	0
54	Electrode Materials. Solid State Phenomena, 2015, 228, 3-15.	0.3	0

#	Article	IF	CITATIONS
55	Characterization of Composite Coatings Obtained by Electrodeposition. Solid State Phenomena, 0, 228, 49-57.	0.3	O
56	Comparison of Electrocatalytic Activity of the Composite Ni-P+NiO and Ni-P+Ni(OH) ₂ Coatings for Hydrogen Evolution. Solid State Phenomena, 2015, 228, 213-218.	0.3	0
57	The Influence of Temperature of Electrodeposition on the Electrochemical Properties of Ni+MoS ₂ Composite Coatings. Solid State Phenomena, 2015, 228, 237-241.	0.3	O
58	Tailoring Structural and Electrochemical Properties of Composite Ni-Based Electrocoatings. Solid State Phenomena, 0, 228, 200-206.	0.3	0
59	Electrodeposition Process of Composite Ni-P+Ni(OH) ₂ +PTFE Coatings. Solid State Phenomena, 2015, 228, 108-115.	0.3	0
60	Effect of Sodium Hypophosphite Content in the Electroplating Bath on the Electrochemical Properties of Ni-P Alloy Coatings. Solid State Phenomena, 0, 228, 246-251.	0.3	0
61	The Hydrogen Evolution Reaction on Ni Electrode Material Modified with Molybdenum(IV) Oxide and Chromium(III) Oxide Powders. Solid State Phenomena, 2015, 228, 273-276.	0.3	0
62	Electrodeposition and Thermal Treatment of Nickel Coatings Containing Cobalt. Solid State Phenomena, 2015, 228, 158-162.	0.3	0
63	Characteristics of the Galvanic Baths for Electrodeposition of Nickel Coatings Using the Hull Cell. Solid State Phenomena, 2015, 228, 79-88.	0.3	0
64	The Influence of Temperature of Electrodeposition on the Electrochemical Properties of Ni+MoS ₂ +Mo Composite Coatings. Solid State Phenomena, 0, 228, 263-268.	0.3	0
65	Electrochemical Characterization of Nickel-Based Composite Coatings Containing Molybdenum or Tungsten Nanopowders. Solid State Phenomena, 2015, 228, 283-287.	0.3	0
66	Electrodeposition and Thermal Treatment of Ni+W+Si and Ni+W+Mo+Si Composite Coatings. Solid State Phenomena, 0, 228, 172-175.	0.3	0
67	On Problems of Determination of the Kinetics of Hydrogen Electroevolution Reaction. Solid State Phenomena, 2015, 228, 333-343.	0.3	0
68	Comparison of Electrochemical Properties of Ni+MoS ₂ and Ni Coatings in an Alkaline Solution. Solid State Phenomena, 2015, 228, 225-230.	0.3	0
69	Amorphous Ni-P Electrode Materials. Solid State Phenomena, 0, 228, 32-38.	0.3	0
70	Production and Electrochemical Characterization of Nickel Based Composite Coatings Containing Chromium Group Metal and Silicon Powders. Solid State Phenomena, 0, 228, 219-224.	0.3	0
71	Cyclic Voltammetry Studies on Electrochemical Behavior of the Composite Ni-P+TiO ₂ Electrocatalysts in Alkaline Solutions. Solid State Phenomena, 2015, 228, 207-212.	0.3	0
72	The Influence of Temperature of Electrodeposition on the Electrochemical Properties of Ni Coatings. Solid State Phenomena, 2015, 228, 242-245.	0.3	0

#	Article	IF	CITATIONS
73	Polyurethane-Based Porous Carbons Suitable for Medical Application. Materials, 2022, 15, 3313.	1.3	0
74	Production of Electrolytic Composite Powder by Nickel Plating of Shredded Polyurethane Foam. Materials, 2022, 15, 3895.	1.3	0