Ewa Bromek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8349207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The mechanisms of interactions of psychotropic drugs with liver and brain cytochrome P450 and their significance for drug effect and drug-drug interactions. Biochemical Pharmacology, 2022, 199, 115006.	2.0	14
2	The Influence of Long-Term Treatment with Asenapine on Liver Cytochrome P450 Expression and Activity in the Rat. The Involvement of Different Mechanisms. Pharmaceuticals, 2021, 14, 629.	1.7	6
3	The regulation of liver cytochrome P450 expression and activity by the brain serotonergic system in different experimental models. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 413-424.	1.5	13
4	The Selective NMDA Receptor GluN2B Subunit Antagonist CP-101,606 with Antidepressant Properties Modulates Cytochrome P450 Expression in the Liver. Pharmaceutics, 2021, 13, 1643.	2.0	3
5	Chronic treatment with asenapine affects cytochrome P450 2D (CYP2D) in rat brain and liver. Pharmacological aspects. Neurochemistry International, 2021, 151, 105209.	1.9	5
6	The effects of agomelatine and imipramine on liver cytochrome P450 during chronic mild stress (CMS) in the rat. Pharmacological Reports, 2020, 72, 1271-1287.	1.5	6
7	Stimulation of 5-HT2C serotonin receptor subtype in the hypothalamic arcuate nuclei (ARC) increases the cytochrome P450 activity in the liver. Pharmacological Reports, 2019, 71, 1210-1212.	1.5	4
8	Serotonin Receptors of 5-HT ₂ Type in the Hypothalamic Arcuate Nuclei Positively Regulate Liver Cytochrome P450 via Stimulation of the Growth Hormone–Releasing Hormone/Growth Hormone Hormonal Pathway. Drug Metabolism and Disposition, 2019, 47, 80-85.	1.7	7
9	Activation of 5-HT1A Receptors in the Hypothalamic Paraventricular Nuclei Negatively Regulates Cytochrome P450 Expression and Activity in Rat Liver. Drug Metabolism and Disposition, 2018, 46, 786-793.	1.7	9
10	The reverse role of the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei in the central serotonergic regulation of the liver cytochrome P450 isoform CYP2C11. Biochemical Pharmacology, 2016, 112, 82-89.	2.0	18
11	Melatonin Supports CYP2D-Mediated Serotonin Synthesis in the Brain. Drug Metabolism and Disposition, 2016, 44, 445-452.	1.7	24
12	Activation of brain serotonergic system by repeated intracerebral administration of 5-hydroxytryptophan (5-HTP) decreases the expression and activity of liver cytochrome P450. Biochemical Pharmacology, 2016, 99, 113-122.	2.0	18
13	The role of the dorsal noradrenergic pathway of the brain (locus coeruleus) in the regulation of liver cytochrome P450 activity. European Journal of Pharmacology, 2015, 751, 34-41.	1.7	15
14	The cytochrome P450 2Dâ€mediated formation of serotonin from 5â€methoxytryptamine in the brain <i>in vivo</i> : a microdialysis study. Journal of Neurochemistry, 2015, 133, 83-92.	2.1	31
15	Damage to the Brain Serotonergic System Increases the Expression of Liver Cytochrome P450. Drug Metabolism and Disposition, 2015, 43, 1345-1352.	1.7	21
16	Role of brain cytochrome P450 (CYP2D) in the metabolism of monoaminergic neurotransmitters. Pharmacological Reports, 2013, 65, 1519-1528.	1.5	27
17	Involvement of the paraventricular (PVN) and arcuate (ARC) nuclei of the hypothalamus in the central noradrenergic regulation of liver cytochrome P450. Biochemical Pharmacology, 2013, 86, 1614-1620.	2.0	27
18	The catalytic competence of cytochrome P450 in the synthesis of serotonin from 5-methoxytryptamine in the brain: An in vitro study. Pharmacological Research, 2013, 67, 53-59.	3.1	32

Ewa Bromek

#	Article	IF	CITATIONS
19	Cytochrome P450 mediates dopamine formation in the brain <i>in vivo</i> . Journal of Neurochemistry, 2011, 118, 806-815.	2.1	70
20	The effect of psychotropic drugs on cytochrome P450 2D (CYP2D) in rat brain. European Journal of Pharmacology, 2011, 651, 51-58.	1.7	24
21	The ability of cytochrome P450 2D isoforms to synthesize dopamine in the brain: An in vitro study. European Journal of Pharmacology, 2010, 626, 171-178.	1.7	56
22	Effect of mirtazapine on the CYP2D activity in the primary culture of rat hepatocytes. Pharmacological Reports, 2006, 58, 979-84.	1.5	2