

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8349008/publications.pdf Version: 2024-02-01

1.70

#	Article	IF	CITATIONS
1	Dynamics of a stochastic multigroup S-DI-A model for the transmission of HIV. Applicable Analysis, 2022, 101, 747-772.	1.3	2
2	Global dynamical behavior of a multigroup SVIR epidemic model with Markovian switching. International Journal of Biomathematics, 2022, 15, .	2.9	4
3	Dynamics of a stochastic multigroup SEI epidemic model. Stochastic Analysis and Applications, 2022, 40, 623-656.	1.5	2
4	Stationary distribution and extinction of a stochastic multigroup DS-DI-a model for the transmission of HIV. Stochastic Analysis and Applications, 2022, 40, 830-853.	1.5	2
5	Ergodic stationary distribution and practical application of a hybrid stochastic cholera transmission model with waning vaccineâ€induced immunity under nonlinear regime switching. Mathematical Methods in the Applied Sciences, 2022, 45, 423-455.	2.3	3
6	Ergodic property, extinction, and density function of an SIRI epidemic model with nonlinear incidence rate and highâ€order stochastic perturbations. Mathematical Methods in the Applied Sciences, 2022, 45, 1513-1537.	2.3	4
7	Ergodic stationary distribution and extinction of a staged progression HIV/AIDS infection model with nonlinear stochastic perturbations. Nonlinear Dynamics, 2022, 107, 3863-3886.	5.2	2
8	Asymptotic behavior of a stochastic SIR model with general incidence rate and nonlinear Lévy jumps. Nonlinear Dynamics, 2022, 107, 2975-2993.	5.2	13
9	Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process. Mathematics and Computers in Simulation, 2022, 196, 15-44.	4.4	42
10	Dynamical Behavior of a Stochastic Microorganism Flocculation Model with Nonlinear Perturbation. Qualitative Theory of Dynamical Systems, 2022, 21, 1.	1.7	3
11	Transmission Dynamics of a High Dimensional Rabies Epidemic Model in a Markovian Random Environment. Qualitative Theory of Dynamical Systems, 2022, 21, 1.	1.7	0
12	Dynamical Behaviors of a Stochastic Food Chain System with Ornstein–Uhlenbeck Process. Journal of Nonlinear Science, 2022, 32, 1.	2.1	23
13	Stationary distribution and extinction of a stochastic two-stage model of social insects with egg cannibalism. Applied Mathematics Letters, 2022, 132, 108100.	2.7	4
14	Virus infection model under nonlinear perturbation: Ergodic stationary distribution and extinction. Journal of the Franklin Institute, 2022, 359, 11039-11067.	3.4	6
15	Analysis of a stochastic predator–prey model with weak Allee effect and Holling-(n+1) functional response. Communications in Nonlinear Science and Numerical Simulation, 2022, 111, 106454.	3.3	8
16	Analysis of a stochastic population model with mean-reverting Ornstein–Uhlenbeck process and Allee effects. Communications in Nonlinear Science and Numerical Simulation, 2022, 111, 106450.	3.3	20
17	Analysis of a Stochastic Phytoplankton–Zooplankton Model under Non-degenerate and Degenerate Diffusions. Journal of Nonlinear Science, 2022, 32, 1.	2.1	7
18	Threshold dynamics in a stochastic chemostat model under regime switching. Physica A: Statistical Mechanics and Its Applications, 2022, 599, 127454.	2.6	2

#	Article	IF	CITATIONS
19	A stochastic SEIRS rabies model with population dispersal: Stationary distribution and probability density function. Applied Mathematics and Computation, 2022, 427, 127189.	2.2	8
20	Qualitative Analysis of an HIV/AIDS Model with Treatment and Nonlinear Perturbation. Qualitative Theory of Dynamical Systems, 2022, 21, .	1.7	4
21	Stationary distribution and extinction of a stochastic model of syphilis transmission in an MSM population with telegraph noises. Journal of Applied Mathematics and Computing, 2021, 66, 645-672.	2.5	7
22	Ergodicity and threshold behaviors of a predatorâ€prey model in stochastic chemostat driven by regime switching. Mathematical Methods in the Applied Sciences, 2021, 44, 325-344.	2.3	11
23	Influence of the fear factor on the dynamics of a stochastic predator–prey model. Applied Mathematics Letters, 2021, 112, 106756.	2.7	49
24	Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth. Chaos, Solitons and Fractals, 2021, 142, 110519.	5.1	13
25	Stationary distribution and extinction for a food chain chemostat model with random perturbation. Mathematical Methods in the Applied Sciences, 2021, 44, 1013-1028.	2.3	3
26	ANALYSIS OF A MULTI-GROUP ALCOHOLISM MODEL WITH PUBLIC HEALTH EDUCATION UNDER REGIME SWITCHING. Journal of Applied Analysis and Computation, 2021, 11, 2279-2302.	0.5	1
27	Dynamical behavior of a stochastic Nicholson's blowflies model with distributed delay and degenerate diffusion. Nonlinear Dynamics, 2021, 103, 2081-2096.	5.2	7
28	Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies. Chaos, Solitons and Fractals, 2021, 143, 110601.	5.1	21
29	Dynamics of an autonomous Gilpin–Ayala competition model with random perturbation. International Journal of Biomathematics, 2021, 14, 2050043.	2.9	1
30	Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity. Nonlinear Dynamics, 2021, 105, 931-955.	5.2	14
31	Dynamics of an SIR epidemic model with varying population sizes and regime switching in a two patch setting. Physica A: Statistical Mechanics and Its Applications, 2021, 574, 125992.	2.6	7
32	Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay. Applied Mathematics and Computation, 2021, 405, 126236.	2.2	10
33	Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses. Mathematics and Computers in Simulation, 2021, 188, 548-570.	4.4	18
34	Ergodic stationary distribution and extinction of a n-species Gilpin–Ayala competition system with nonlinear random perturbations. Applied Mathematics Letters, 2021, 120, 107273.	2.7	5
35	Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations. Chaos, Solitons and Fractals, 2021, 152, 111338.	5.1	17
36	Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching. Applied Mathematics and Computation, 2021, 410, 126388.	2.2	14

#	Article	IF	CITATIONS
37	Dynamic analysis of a stochastic toxin-mediated predator-prey model in aquatic environments. Journal of Mathematical Analysis and Applications, 2021, 504, 125424.	1.0	8
38	Periodic Solution of a Stochastic Microorganism Flocculation Model with Distributed Delay. , 2021, , .		0
39	Global Asymptotic Behavior of a Multi-species Stochastic Chemostat Model with Discrete Delays. Journal of Dynamics and Differential Equations, 2020, 32, 849-872.	1.9	13
40	Stationary Distribution and Extinction of a Stochastic HIV-1 Infection Model with Distributed Delay and Logistic Growth. Journal of Nonlinear Science, 2020, 30, 369-395.	2.1	17
41	Analysis of a Stochastic Holling Type II Predator–Prey Model Under Regime Switching. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 2171-2197.	0.9	7
42	Threshold behavior in a stochastic SIR epidemic model with Logistic birth. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 123488.	2.6	11
43	A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate. Physica A: Statistical Mechanics and Its Applications, 2020, 551, 124152.	2.6	28
44	Dynamic for a Stochastic Multi-Group AIDS Model with Saturated Incidence Rate. Acta Mathematica Scientia, 2020, 40, 1883-1896.	1.0	3
45	Dynamical behavior of a higher order stochastically perturbed HIV/AIDS model with differential infectivity and amelioration. Chaos, Solitons and Fractals, 2020, 141, 110333.	5.1	18
46	Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation. Chaos, Solitons and Fractals, 2020, 140, 110238.	5.1	37
47	Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate. Chaos, Solitons and Fractals, 2020, 137, 109865.	5.1	53
48	Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage. Chaos, Solitons and Fractals, 2020, 139, 110013.	5.1	17
49	Dynamics of a multigroup SIQS epidemic model under regime switching. Stochastic Analysis and Applications, 2020, 38, 769-796.	1.5	8
50	The impact of virus carrier screening and actively seeking treatment on dynamical behavior of a stochastic HIV/AIDS infection model. Applied Mathematical Modelling, 2020, 85, 378-404.	4.2	26
51	DYNAMICS OF A STOCHASTIC CHEMOSTAT COMPETITION MODEL WITH PLASMID-BEARING AND PLASMID-FREE ORGANISMS. Journal of Applied Analysis and Computation, 2020, 10, 1464-1481.	0.5	2
52	Periodic Solution for a Stochastic Non-autonomous Predator-Prey Model with Holling II Functional Response. Acta Applicandae Mathematicae, 2019, 161, 89-105.	1.0	11
53	Threshold behavior in a stochastic delayed SIS epidemic model with vaccination and double diseases. Journal of the Franklin Institute, 2019, 356, 7466-7485.	3.4	20
54	A regime-switching SIR epidemic model with a ratio-dependent incidence rate and degenerate diffusion. Scientific Reports, 2019, 9, 10696.	3.3	3

#	Article	IF	CITATIONS
55	Dynamical behavior of a stochastic epidemic model for cholera. Journal of the Franklin Institute, 2019, 356, 7486-7514.	3.4	28
56	Stationary distribution of an HIV model with general nonlinear incidence rate and stochastic perturbations. Journal of the Franklin Institute, 2019, 356, 6610-6637.	3.4	29
57	Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion. Journal of the Franklin Institute, 2019, 356, 7347-7370.	3.4	20
58	Stationary distribution and periodic solution of stochastic chemostat models with single-species growth on two nutrients. International Journal of Biomathematics, 2019, 12, 1950063.	2.9	9
59	Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates. Journal of the Franklin Institute, 2019, 356, 2960-2993.	3.4	29
60	Stationary distribution of a stochastic predator–prey model with distributed delay and higher order perturbations. Physica A: Statistical Mechanics and Its Applications, 2019, 521, 467-475.	2.6	12
61	Analysis of stochastic multimolecular biochemical reaction model with lévy jumps. Physica A: Statistical Mechanics and Its Applications, 2019, 524, 601-613.	2.6	4
62	Ergodic stationary distribution of a stochastic chemostat model with regime switching. Physica A: Statistical Mechanics and Its Applications, 2019, 524, 491-502.	2.6	4
63	Stationary distribution of a stochastic staged progression HIV model with imperfect vaccination. Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121271.	2.6	11
64	Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth. Physica A: Statistical Mechanics and Its Applications, 2019, 523, 894-907.	2.6	7
65	Dynamics of a multigroup SIS epidemic model with standard incidence rates and Markovian switching. Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121270.	2.6	5
66	Dynamical behavior of a hybrid switching SIS epidemic model with vaccination and Lévy jumps. Stochastic Analysis and Applications, 2019, 37, 388-411.	1.5	8
67	Dynamics of an avian influenza model with half-saturated incidence. Applied Mathematics and Computation, 2019, 355, 399-416.	2.2	34
68	The threshold of a chemostat model with single-species growth on two nutrients under telegraph noise. Communications in Nonlinear Science and Numerical Simulation, 2019, 75, 160-173.	3.3	7
69	Stationary distribution of a stochastic within-host dengue infection model with immune response and regime switching. Physica A: Statistical Mechanics and Its Applications, 2019, 526, 121057.	2.6	9
70	Long-time behaviour of a stochastic chemostat model with distributed delay. Stochastics, 2019, 91, 1141-1163.	1.1	6
71	Threshold behavior of a stochastic Lotka–Volterra food chain chemostat model with jumps. Physica A: Statistical Mechanics and Its Applications, 2019, 523, 191-203.	2.6	7
72	Stationary distribution and extinction of a stochastic one-prey two-predator model with Holling type Il functional response. Stochastic Analysis and Applications, 2019, 37, 321-345.	1.5	14

#	Article	IF	CITATIONS
73	Stationary distribution of a stochastic food chain chemostat model with general response functions. Applied Mathematics Letters, 2019, 91, 151-157.	2.7	24
74	Stationary distribution of a regime-switching predator–prey model with anti-predator behaviour and higher-order perturbations. Physica A: Statistical Mechanics and Its Applications, 2019, 515, 199-210.	2.6	24
75	DYNAMICAL BEHAVIOR OF A STOCHASTIC FOOD CHAIN CHEMOSTAT MODEL WITH MONOD RESPONSE FUNCTIONS. Journal of Applied Analysis and Computation, 2019, 9, 2278-2294.	0.5	Ο
76	QUALITATIVE ANALYSIS OF STOCHASTIC RATIO-DEPENDENT PREDATOR-PREY SYSTEMS. Journal of Applied Analysis and Computation, 2019, 9, 475-500.	0.5	0
77	Dynamics of a Stochastic Predator–Prey Model with Stage Structure for Predator and Holling Type II Functional Response. Journal of Nonlinear Science, 2018, 28, 1151-1187.	2.1	68
78	Stationary distribution and extinction of a stochastic SIRI epidemic model with relapse. Stochastic Analysis and Applications, 2018, 36, 138-151.	1.5	26
79	Qualitative analysis of a stochastic ratio-dependent Holling-Tanner system. Acta Mathematica Scientia, 2018, 38, 429-440.	1.0	2
80	Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed delay. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 542-559.	2.6	35
81	Asymptotic behavior of a food-limited Lotka–Volterra mutualism model with Markovian switching and LA©vy jumps. Physica A: Statistical Mechanics and Its Applications, 2018, 505, 94-104.	2.6	7
82	Ergodic property of a Lotka–Volterra predator–prey model with white noise higher order perturbation under regime switching. Applied Mathematics and Computation, 2018, 330, 93-102.	2.2	28
83	Periodic solution and stationary distribution of stochastic S-DI-A epidemic models. Applicable Analysis, 2018, 97, 179-193.	1.3	7
84	The threshold of a stochastic SIS epidemic model with imperfect vaccination. Mathematics and Computers in Simulation, 2018, 144, 78-90.	4.4	28
85	Asymptotic properties of a stochastic chemostat including species death rate. Mathematical Methods in the Applied Sciences, 2018, 41, 438-456.	2.3	8
86	Periodic Solution and Stationary Distribution of Stochastic Predator–Prey Models with Higher-Order Perturbation. Journal of Nonlinear Science, 2018, 28, 423-442.	2.1	31
87	Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and Lévy jumps. Nonlinear Analysis: Hybrid Systems, 2018, 27, 29-43.	3.5	67
88	Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching. Applied Mathematics and Computation, 2018, 316, 310-325.	2.2	75
89	Stationary distribution and extinction of a stochastic predator–prey model with distributed delay. Applied Mathematics Letters, 2018, 78, 79-87.	2.7	46
90	Dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases driven by LA©vy jumps. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 2010-2018.	2.6	34

#	Article	IF	CITATIONS
91	Ergodic property of the chemostat: A stochastic model under regime switching and with general response function. Nonlinear Analysis: Hybrid Systems, 2018, 27, 341-352.	3.5	34
92	Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation. Applied Mathematics and Computation, 2018, 320, 226-239.	2.2	49
93	Dynamics of DSâ€lâ€A epidemic model with multiple stochastic perturbations. Mathematical Methods in the Applied Sciences, 2018, 41, 6024-6049.	2.3	1
94	Stationary distribution and extinction of a stochastic predator–prey model with herd behavior. Journal of the Franklin Institute, 2018, 355, 8177-8193.	3.4	20
95	Stationary distribution and extinction of a stochastic dengue epidemic model. Journal of the Franklin Institute, 2018, 355, 8891-8914.	3.4	21
96	Nontrivial periodic solution for a stochastic brucellosis model with application to Xinjiang, China. Physica A: Statistical Mechanics and Its Applications, 2018, 510, 522-537.	2.6	15
97	Dynamical behavior of stochastic multigroup S-DI-A epidemic models for the transmission of HIV. Journal of the Franklin Institute, 2018, 355, 5830-5865.	3.4	17
98	Threshold behavior in a stochastic HTLVâ€I infection model with CTL immune response and regime switching. Mathematical Methods in the Applied Sciences, 2018, 41, 6866-6882.	2.3	19
99	Stationary distribution and extinction of a stochastic HIV-1 model with Beddington–DeAngelis infection rate. Physica A: Statistical Mechanics and Its Applications, 2018, 512, 414-426.	2.6	8
100	Unique stationary distribution and ergodicity of a stochastic Logistic model with distributed delay. Physica A: Statistical Mechanics and Its Applications, 2018, 512, 864-881.	2.6	20
101	Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation. Physica A: Statistical Mechanics and Its Applications, 2018, 508, 289-304.	2.6	21
102	Stochastic mutualism model with Lévy jumps. Communications in Nonlinear Science and Numerical Simulation, 2017, 43, 78-90.	3.3	43
103	Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence. Physica A: Statistical Mechanics and Its Applications, 2017, 476, 58-69.	2.6	51
104	Periodic solution and stationary distribution of stochastic SIR epidemic models with higher order perturbation. Physica A: Statistical Mechanics and Its Applications, 2017, 482, 209-217.	2.6	25
105	Dynamical behavior of a stochastic SVIR epidemic model with vaccination. Physica A: Statistical Mechanics and Its Applications, 2017, 483, 94-108.	2.6	45
106	A note on the stationary distribution of the stochastic chemostat model with general response functions. Applied Mathematics Letters, 2017, 73, 22-28.	2.7	33
107	Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation. Applied Mathematics Letters, 2017, 73, 8-15.	2.7	75
108	Asymptotic behavior of a stochastic population model with Allee effect by Lévy jumps. Nonlinear Analysis: Hybrid Systems, 2017, 24, 1-12.	3.5	20

#	Article	IF	CITATIONS
109	Dynamical behavior of a stochastic HBV infection model with logistic hepatocyte growth. Acta Mathematica Scientia, 2017, 37, 927-940.	1.0	17
110	Stationary distribution and extinction of the DS-I-A model disease with periodic parameter function and Markovian switching. Applied Mathematics and Computation, 2017, 311, 66-84.	2.2	10
111	Periodic solution for a stochastic non-autonomous competitive Lotka–Volterra model in a polluted environment. Physica A: Statistical Mechanics and Its Applications, 2017, 471, 276-287.	2.6	23
112	Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps. Physica A: Statistical Mechanics and Its Applications, 2017, 471, 767-777.	2.6	57
113	Dynamics of the stochastic chemostat with Monod-Haldane response function. Scientific Reports, 2017, 7, 13641.	3.3	5
114	Dynamics of hybrid switching DS-I-A epidemic model. Scientific Reports, 2017, 7, 12332.	3.3	1
115	A stochastic HIV infection model with T-cell proliferation and CTL immune response. Applied Mathematics and Computation, 2017, 315, 477-493.	2.2	36
116	Stationary distribution of a stochastic SIS epidemic model with double diseases and the Beddington-DeAngelis incidence. Chaos, 2017, 27, 083126.	2.5	16
117	Periodic solution for the stochastic chemostat with general response function. Physica A: Statistical Mechanics and Its Applications, 2017, 486, 378-385.	2.6	8
118	Dynamics of a stochastic Holling type II predator–prey model with hyperbolic mortality. Nonlinear Dynamics, 2017, 87, 2011-2020.	5.2	17
119	Asymptotic behavior of stochastic multi-group epidemic models with distributed delays. Physica A: Statistical Mechanics and Its Applications, 2017, 467, 527-541.	2.6	12
120	The threshold of a nonâ€autonomous SIRS epidemic model with stochastic perturbations. Mathematical Methods in the Applied Sciences, 2017, 40, 1773-1782.	2.3	12
121	Dynamics of a stochastic HIV-1 infection model with logistic growth. Physica A: Statistical Mechanics and Its Applications, 2017, 469, 706-717.	2.6	36
122	Stationary distribution and periodic solutions for stochastic Holling–Leslie predator–prey systems. Physica A: Statistical Mechanics and Its Applications, 2016, 460, 16-28.	2.6	15
123	Asymptotic behaviors of a stochastic delayed SIR epidemic model with nonlinear incidence. Communications in Nonlinear Science and Numerical Simulation, 2016, 40, 89-99.	3.3	35
124	Periodic solutions for a stochastic non-autonomous Holling–Tanner predator–prey system with impulses. Nonlinear Analysis: Hybrid Systems, 2016, 22, 191-201.	3.5	29
125	Periodic solutions and stationary distribution of mutualism models in random environments. Physica A: Statistical Mechanics and Its Applications, 2016, 460, 270-282.	2.6	15
126	The threshold of a stochastic delayed SIR epidemic model with vaccination. Physica A: Statistical Mechanics and Its Applications, 2016, 461, 140-147.	2.6	37

#	Article	IF	CITATIONS
127	Periodic solution for a stochastic nonautonomous SIR epidemic model with logistic growth. Physica A: Statistical Mechanics and Its Applications, 2016, 462, 816-826.	2.6	18
128	Dynamics of stochastic predator–prey models with Holling II functional response. Communications in Nonlinear Science and Numerical Simulation, 2016, 37, 62-76.	3.3	42
129	The periodic solutions of a stochastic chemostat model with periodic washout rate. Communications in Nonlinear Science and Numerical Simulation, 2016, 37, 1-13.	3.3	37
130	Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching. Applied Mathematics Letters, 2016, 59, 87-93.	2.7	107
131	The asymptotic behavior and ergodicity of stochastically perturbed SVIR epidemic model. International Journal of Biomathematics, 2016, 09, 1650042.	2.9	5
132	The threshold of a stochastic delayed SIR epidemic model with temporary immunity. Physica A: Statistical Mechanics and Its Applications, 2016, 450, 115-125.	2.6	61
133	Competitive exclusion in a stochastic chemostat model with Holling type II functional response. Journal of Mathematical Chemistry, 2016, 54, 777-791.	1.5	25
134	Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting. Communications in Nonlinear Science and Numerical Simulation, 2016, 36, 65-80.	3.3	34
135	Asymptotic behavior of a three species eco-epidemiological model perturbed by white noise. Journal of Mathematical Analysis and Applications, 2016, 433, 121-148.	1.0	11
136	Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete and Continuous Dynamical Systems - Series B, 2016, 21, 2363-2378.	0.9	6
137	Periodic solution for stochastic non-autonomous multispecies Lotka–Volterra mutualism type ecosystem. Applied Mathematics and Computation, 2015, 262, 204-217.	2.2	11
138	Nontrivial periodic solution of a stochastic epidemic model with seasonal variation. Applied Mathematics Letters, 2015, 45, 103-107.	2.7	52
139	Periodic solution for a non-autonomous Lotka–Volterra predator–prey model with random perturbation. Journal of Mathematical Analysis and Applications, 2015, 430, 428-437.	1.0	47
140	Conditions for persistence and ergodicity of a stochastic Lotka–Volterra predator–prey model with regime switching. Communications in Nonlinear Science and Numerical Simulation, 2015, 29, 1-11.	3.3	68
141	The coexistence of a stochastic Lotka–Volterra model with two predators competing for one prey. Applied Mathematics and Computation, 2015, 269, 288-300.	2.2	14
142	The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 1277-1295.	0.9	12
143	The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 1289-1307.	0.9	22
144	The Behavior of an SVIR Epidemic Model with Stochastic Perturbation. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	7

#	Article	IF	CITATIONS
145	Stationary distribution of a stochastic SIS epidemic model with vaccination. Physica A: Statistical Mechanics and Its Applications, 2014, 394, 187-197.	2.6	82
146	The threshold of a stochastic SIRS epidemic model with saturated incidence. Applied Mathematics Letters, 2014, 34, 90-93.	2.7	159
147	Long-time behavior of a stochastic SIR model. Applied Mathematics and Computation, 2014, 236, 1-9.	2.2	57
148	The dynamics of the stochastic multi-molecule biochemical reaction model. Journal of Mathematical Chemistry, 2014, 52, 1477-1495.	1.5	8
149	Threshold behaviour of a stochastic SIR model. Applied Mathematical Modelling, 2014, 38, 5067-5079.	4.2	210
150	Dynamics of the stochastic low concentration trimolecular chemical reaction model. Journal of Mathematical Chemistry, 2014, 52, 2532-2545.	1.5	5
151	The threshold of a stochastic SIS epidemic model with vaccination. Applied Mathematics and Computation, 2014, 243, 718-727.	2.2	228
152	Asymptotic properties and simulations of a stochastic single-species dispersal model under regime switching. Journal of Applied Mathematics and Computing, 2013, 43, 387-407.	2.5	0
153	Long-time behaviour of a perturbed SIR model by white noise. Discrete and Continuous Dynamical Systems - Series B, 2013, 18, 1873-1887.	0.9	43
154	The extinction and persistence of the stochastic SIS epidemic model with vaccination. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 4916-4927.	2.6	124
155	Persistence and Nonpersistence of a Food Chain Model with Stochastic Perturbation. Abstract and Applied Analysis, 2013, 2013, 1-9.	0.7	2
156	ANALYSIS OF A PREDATOR–PREY MODEL WITH DISEASE IN THE PREY. International Journal of Biomathematics, 2013, 06, 1350012.	2.9	13
157	The Behavior of an SIR Epidemic Model with Stochastic Perturbation. Stochastic Analysis and Applications, 2012, 30, 755-773.	1.5	98
158	Dynamics of a multigroup SIR epidemic model with stochastic perturbation. Automatica, 2012, 48, 121-131.	5.0	92
159	The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences. Automatica, 2012, 48, 820-825.	5.0	43
160	The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. Journal of Mathematical Analysis and Applications, 2012, 388, 248-271.	1.0	172
161	Analysis of autonomous Lotka–Volterra competition systems with random perturbation. Journal of Mathematical Analysis and Applications, 2012, 390, 582-595.	1.0	93
162	Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete and Continuous Dynamical Systems, 2012, 32, 867-889.	0.9	27

#	Article	IF	CITATIONS
163	A note on a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation. Journal of Mathematical Analysis and Applications, 2011, 377, 435-440.	1.0	81
164	Multigroup SIR epidemic model with stochastic perturbation. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 1747-1762.	2.6	132
165	Qualitative analysis of a stochastic ratio-dependent predator–prey system. Journal of Computational and Applied Mathematics, 2011, 235, 1326-1341.	2.0	104
166	A note on asymptotic behaviors of stochastic population model with Allee effect. Applied Mathematical Modelling, 2011, 35, 4611-4619.	4.2	29
167	Asymptotic behavior of global positive solution to a stochastic SIR model. Mathematical and Computer Modelling, 2011, 54, 221-232.	2.0	150
168	Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. Journal of Mathematical Analysis and Applications, 2011, 376, 11-28.	1.0	189
169	Dynamics of a stochastic density dependent predator–prey system with Beddington–DeAngelis functional response. Journal of Mathematical Analysis and Applications, 2011, 381, 441-453.	1.0	85
170	The long time behavior of DI SIR epidemic model with stochastic perturbation. Journal of Mathematical Analysis and Applications, 2010, 372, 162-180.	1.0	60
171	Existence, Uniqueness and Ergodicity of Positive Solution of Mutualism System with Stochastic Perturbation. Mathematical Problems in Engineering, 2010, 2010, 1-18.	1.1	14
172	Global stability of two-group SIR model with random perturbation. Journal of Mathematical Analysis and Applications, 2009, 360, 235-244.	1.0	95
173	Population dynamical behavior of Lotka–Volterra system under regime switching. Journal of Computational and Applied Mathematics, 2009, 232, 427-448.	2.0	144
174	Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation. Journal of Mathematical Analysis and Applications, 2009, 359, 482-498.	1.0	256
175	Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. Journal of Mathematical Analysis and Applications, 2008, 340, 588-597.	1.0	178
176	Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation. Mathematical Methods in the Applied Sciences, 2007, 30, 77-89.	2.3	22
177	Existence, uniqueness, and global stability of positive solutions to the food-limited population model with random perturbation. Mathematical and Computer Modelling, 2005, 42, 651-658.	2.0	26
178	A note on nonautonomous logistic equation with random perturbation. Journal of Mathematical Analysis and Applications, 2005, 303, 164-172.	1.0	148
179	Existence and multiplicity of positive periodic solutions to functional differential equations with impulse effects. Nonlinear Analysis: Theory, Methods & Applications, 2005, 62, 683-701.	1.1	35
180	Dynamical behavior of a stochastic multigroup staged-progression HIV model with saturated incidence rate and higher-order perturbations. International Journal of Biomathematics, 0, , 2150051.	2.9	5

#	Article	IF	CITATIONS
181	Long-Time Behavior and Density Function of a Stochastic Chemostat Model with Degenerate Diffusion. Journal of Systems Science and Complexity, 0, , 1.	2.8	Ο
182	A stochastic turbidostat model coupled with distributed delay and degenerate diffusion: dynamics analysis. Journal of Applied Mathematics and Computing, 0, , 1.	2.5	0
183	The impact of nonlinear perturbation to the dynamics of HIV model. Mathematical Methods in the Applied Sciences, 0, , .	2.3	1