Denis Jabaudon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8348455/publications.pdf

Version: 2024-02-01

54	4,464	29 h-index	52
papers	citations		g-index
69	69	69	5920 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Usefulness of Ambulatory 7-Day ECG Monitoring for the Detection of Atrial Fibrillation and Flutter After Acute Stroke and Transient Ischemic Attack. Stroke, 2004, 35, 1647-1651.	1.0	367
2	Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8733-8738.	3. 3	283
3	<i>Ctip2</i> Controls the Differentiation of Medium Spiny Neurons and the Establishment of the Cellular Architecture of the Striatum. Journal of Neuroscience, 2008, 28, 622-632.	1.7	280
4	Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science, 2019, 364, .	6.0	275
5	SOX5 Controls the Sequential Generation of Distinct Corticofugal Neuron Subtypes. Neuron, 2008, 57, 232-247.	3 . 8	273
6	Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science, 2016, 351, 1443-1446.	6.0	264
7	Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nature Neuroscience, 2002, 5, 325-331.	7.1	227
8	Acute decrease in net glutamate uptake during energy deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5610-5615.	3.3	219
9	SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nature Neuroscience, 2009, 12, 1238-1247.	7.1	179
10	In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nature Neuroscience, 2013, 16, 193-200.	7.1	167
11	Unveiling the diversity of thalamocortical neuron subtypes. European Journal of Neuroscience, 2012, 35, 1524-1532.	1.2	154
12	Progenitor Hyperpolarization Regulates the Sequential Generation of Neuronal Subtypes in the Developing Neocortex. Cell, 2018, 174, 1264-1276.e15.	13.5	118
13	Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature, 2014, 511, 471-474.	13.7	116
14	Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3576-3581.	3.3	111
15	Fate and freedom in developing neocortical circuits. Nature Communications, 2017, 8, 16042.	5 . 8	93
16	Temporal plasticity of apical progenitors in the developing mouse neocortex. Nature, 2019, 573, 370-374.	13.7	88
17	Reaching beyond the midline: why are human brains cross wired?. Lancet Neurology, The, 2005, 4, 87-99.	4.9	87
18	Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications. ELife, 2016, 5, e09531.	2.8	87

#	Article	IF	CITATIONS
19	RORÎ ² Induces Barrel-like Neuronal Clusters in the Developing Neocortex. Cerebral Cortex, 2012, 22, 996-1006.	1.6	86
20	A cross-modal genetic framework for the development and plasticity of sensory pathways. Nature, 2016, 538, 96-98.	13.7	67
21	Cux1 Enables Interhemispheric Connections of Layer II/III Neurons by Regulating Kv1-Dependent Firing. Neuron, 2016, 89, 494-506.	3.8	64
22	Retinal Input Directs the Recruitment of Inhibitory Interneurons into Thalamic Visual Circuits. Neuron, 2014, 81, 1057-1069.	3.8	63
23	Mapping the molecular and cellular complexity of cortical malformations. Science, 2021, 371, .	6.0	57
24	Migration Speed of Cajal-Retzius Cells Modulated by Vesicular Trafficking Controls the Size of Higher-Order Cortical Areas. Current Biology, 2015, 25, 2466-2478.	1.8	54
25	Excess of serotonin affects neocortical pyramidal neuron migration. Translational Psychiatry, $2011, 1,$ e47-e47.	2.4	52
26	Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing. Nature Communications, 2017, 8, 14219.	5.8	51
27	In vivo pulse labeling of isochronic cohorts of cells in the central nervous system using FlashTag. Nature Protocols, 2018, 13, 2297-2311.	5.5	50
28	Principles of progenitor temporal patterning in the developing invertebrate and vertebrate nervous system. Current Opinion in Neurobiology, 2019, 56, 185-193.	2.0	47
29	BDNF stimulates expression, activity and release of tissue-type plasminogen activator in mouse cortical neurons. European Journal of Neuroscience, 1999, 11, 1639-1646.	1.2	46
30	Temporal controls over inter-areal cortical projection neuron fate diversity. Nature, 2021, 599, 453-457.	13.7	37
31	Specific activation of the paralemniscal pathway during nociception. European Journal of Neuroscience, 2014, 39, 1455-1464.	1.2	33
32	A Translaminar Genetic Logic for the Circuit Identity of Intracortically Projecting Neurons. Current Biology, 2019, 29, 332-339.e5.	1.8	33
33	Input-dependent regulation of excitability controls dendritic maturation in somatosensory thalamocortical neurons. Nature Communications, 2017, 8, 2015.	5.8	30
34	Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Letters, 2017, 591, 3960-3977.	1.3	29
35	In vivo rapid gene delivery into postmitotic neocortical neurons using iontoporation. Nature Protocols, 2015, 10, 25-32.	5.5	20
36	Exploring landscapes of brain morphogenesis with organoids. Development (Cambridge), 2018, 145, .	1.2	20

#	Article	IF	Citations
37	Inhibition of Trpv4 rescues circuit and social deficits unmasked by acute inflammatory response in a Shank3 mouse model of Autism. Molecular Psychiatry, 2022, 27, 2080-2094.	4.1	20
38	Synaptic biology of barrel cortex circuit assembly. Seminars in Cell and Developmental Biology, 2014, 35, 156-164.	2.3	19
39	Corticospinal neuron subpopulation-specific developmental genes prospectively indicate mature segmentally specific axon projection targeting. Cell Reports, 2021, 37, 109843.	2.9	19
40	Pathogenesis and Diagnostic Pitfalls of Ventricular Diverticula: Case Report and Review of the Literature. Neurosurgery, 2003, 52, 209-212.	0.6	17
41	Transcriptional Dysregulation in Postnatal Glutamatergic Progenitors Contributes to Closure of the Cortical Neurogenic Period. Cell Reports, 2018, 22, 2567-2574.	2.9	16
42	Patterning of preâ€thalamic somatosensory pathways. European Journal of Neuroscience, 2012, 35, 1533-1539.	1.2	15
43	A mixed model of neuronal diversity. Nature, 2018, 555, 452-454.	13.7	15
44	Do progenitors play dice?. ELife, 2020, 9, .	2.8	13
45	miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation. Cell Reports, 2022, 38, 110381.	2.9	13
46	Preattentive interference between touch and audition: a case study on multisensory alloesthesia. NeuroReport, 2005, 16, 865-868.	0.6	12
47	Nurturing the cortex's thalamic nature. Current Opinion in Neurology, 2014, 27, 142-148.	1.8	12
48	PlexinA4-Semaphorin3A-mediated crosstalk between main cortical interneuron classes is required for superficial interneuron lamination. Cell Reports, 2021, 34, 108644.	2.9	10
49	An Early Cortical Progenitor-Specific Mechanism Regulates Thalamocortical Innervation. Journal of Neuroscience, 2021, 41, 6822-6835.	1.7	10
50	Heterogeneous fates of simultaneously-born neurons in the cortical ventricular zone. Scientific Reports, 2022, 12, 6022.	1.6	8
51	Development and plasticity of thalamocortical systems. European Journal of Neuroscience, 2012, 35, 1522-1523.	1.2	3
52	Light-dependent development is tailored in visual neurons. Nature, 2022, 603, 37-38.	13.7	1
53	Spontaneous carotid artery dissection. Neurology, 2004, 62, 281-281.	1.5	0
54	Are Cola Drinkers at Risk of Hypovitaminosis C?. Archives of Internal Medicine, 2004, 164, 2281.	4.3	0