
Michael J C Buckle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8348340/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analogues of 2′-hydroxychalcone with modified C4-substituents as the inhibitors against human acetylcholinesterase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 130-137.	2.5	7
2	In vitro functional evaluation of isolaureline, dicentrine and glaucine enantiomers at 5â€HT ₂ and α ₁ receptors. Chemical Biology and Drug Design, 2019, 93, 132-138.	1.5	12
3	2-Aryl-3-(arylideneamino)-1,2-dihydroquinazoline-4(3 <i>H</i>)-ones as inhibitors of cholinesterases and self-induced β-amyloid (Aβ) aggregation: biological evaluations and mechanistic insights from molecular dynamics simulations. RSC Advances, 2018, 8, 7818-7831.	1.7	6
4	Synthesis and evaluation of nuciferine and roemerine enantiomers as 5-HT ₂ and α ₁ receptor antagonists. MedChemComm, 2018, 9, 576-582.	3.5	12
5	Phosphodiesterase-5 inhibitors and their analogues as adulterants of herbal and food products: analysis of the Malaysian market, 2014–16. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1101-1109.	1.1	24
6	Synthesis, Biological Evaluation and Molecular Modelling of 2′-Hydroxychalcones as Acetylcholinesterase Inhibitors. Molecules, 2016, 21, 955.	1.7	24
7	In Silico and In Vitro Analysis of Bacoside A Aglycones and Its Derivatives as the Constituents Responsible for the Cognitive Effects of Bacopa monnieri. PLoS ONE, 2015, 10, e0126565.	1.1	60
8	Model studies on construction of the oxabicyclic [3.3.1] core of the mulberry Diels–Alder adducts morusalbanol A and 441772-64-1. Tetrahedron Letters, 2015, 56, 5082-5085.	0.7	5
9	Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity. Molecules, 2014, 19, 8933-8948.	1.7	19
10	Toward activated homology models of the human M1 muscarinic acetylcholine receptor. Journal of Molecular Graphics and Modelling, 2014, 49, 91-98.	1.3	13
11	Structureâ€Based Identification of Aporphines with Selective 5â€HT _{2A} Receptorâ€Binding Activity. Chemical Biology and Drug Design, 2013, 81, 250-256.	1.5	25
12	Induction of selective cytotoxicity and apoptosis in human T4-lymphoblastoid cell line (CEMss) by boesenbergin a isolated from boesenbergia rotunda rhizomes involves mitochondrial pathway, activation of caspase 3 and G2/M phase cell cycle arrest. BMC Complementary and Alternative Medicine, 2013, 13, 41.	3.7	35
13	Rational Discovery of Dengue Type 2 Nonâ€Competitive Inhibitors. Chemical Biology and Drug Design, 2013, 82, 1-11.	1.5	38
14	Homology modeling of the human 5-HT1A, 5-HT2A, D1, and D2 receptors: model refinement with molecular dynamics simulations and docking evaluation. Journal of Molecular Modeling, 2012, 18, 3639-3655.	0.8	26
15	Synthesis, Characterization, X-ray Crystallography, Acetyl Cholinesterase Inhibition and Antioxidant Activities of Some Novel Ketone Derivatives of Gallic Hydrazide-Derived Schiff Bases. Molecules, 2012, 17, 2408-2427.	1.7	30
16	Synthesis, Characterization, Acetylcholinesterase Inhibition, Molecular Modeling and Antioxidant Activities of Some Novel Schiff Bases Derived from 1-(2-Ketoiminoethyl)piperazines. Molecules, 2011, 16, 9316-9330.	1.7	16
17	Synthesis of (±)-kuwanon V and (±)-dorsterone methyl ethers via Diels–Alder reaction. Tetrahedron Letters, 2011, 52, 1797-1799.	0.7	32
18	An efficient one-pot synthesis of flavones. Tetrahedron Letters, 2011, 52, 3120-3123.	0.7	30

MICHAEL J C BUCKLE

#	Article	IF	CITATIONS
19	An efficient synthesis of (±)-panduratin A and (±)-isopanduratin A, inhibitors of dengue-2 viral activity. Tetrahedron Letters, 2010, 51, 495-498.	0.7	36
20	Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fìtoterapìâ, 2004, 75, 68-73.	1.1	118
21	Accurate determinations of the extent to which the SE2? reactions of allyl-, allenyl- and propargylsilanes are stereospecifically anti. Organic and Biomolecular Chemistry, 2004, 2, 749.	1.5	48
22	Accurate determination of the extent to which the SE2′ reactions of an allenylsilane are stereospecifically anti. Tetrahedron Letters, 1993, 34, 2383-2386.	0.7	40
23	Accurate determination of the extent to which an SE2′ reaction of an allylsilane is anti. Tetrahedron Letters, 1992, 33, 4479-4482.	0.7	38