
Giacomo Squicciarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8348052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of measurement-based methods for separating wheel and track contributions to railway rolling noise. Applied Acoustics, 2018, 140, 48-62.	3.3	32
2	A model of a discretely supported railway track based on a 2.5D finite element approach. Journal of Sound and Vibration, 2019, 438, 153-174.	3.9	32
3	The effect of different combinations of boundary conditions on the average radiation efficiency of rectangular plates. Journal of Sound and Vibration, 2014, 333, 3931-3948.	3.9	30
4	Sound transmission loss properties of truss core extruded panels. Applied Acoustics, 2018, 131, 134-153.	3.3	30
5	Sound radiation of a railway rail in close proximity to the ground. Journal of Sound and Vibration, 2016, 362, 111-124.	3.9	28
6	An assessment of mode-coupling and falling-friction mechanisms in railway curve squeal through a simplified approach. Journal of Sound and Vibration, 2018, 423, 126-140.	3.9	23
7	Experimental procedures for testing the performance of rail dampers. Journal of Sound and Vibration, 2015, 359, 21-39.	3.9	22
8	Effect of rail dynamics on curve squeal under constant friction conditions. Journal of Sound and Vibration, 2019, 442, 183-199.	3.9	21
9	Sound radiation from railway sleepers. Journal of Sound and Vibration, 2016, 369, 178-194.	3.9	20
10	An engineering model for the prediction of the sound radiation from a railway track. Journal of Sound and Vibration, 2019, 461, 114921.	3.9	20
11	The effect of temperature on railway rolling noise. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230, 1777-1789.	2.0	17
12	The effects of ballast on the sound radiation from railway track. Journal of Sound and Vibration, 2017, 399, 137-150.	3.9	17
13	The noise radiated by ballasted and slab tracks. Applied Acoustics, 2019, 151, 193-205.	3.3	15
14	Implications of the directivity of railway noise sources for their quantification using conventional beamforming. Journal of Sound and Vibration, 2019, 459, 114841.	3.9	14
15	Aerodynamic noise of high-speed train pantographs: Comparisons between field measurements and an updated component-based prediction model. Applied Acoustics, 2021, 175, 107791.	3.3	14
16	Use of a reciprocity technique to measure the radiation efficiency of a vibrating structure. Applied Acoustics, 2015, 89, 107-121.	3.3	13
17	Wavenumber–domain separation of rail contribution to pass-by noise. Journal of Sound and Vibration, 2017, 409, 24-42.	3.9	13
18	Numerical Analysis of the Dynamic Response of a 5-Conductor Expanded Bundle Subjected to Turbulent Wind. IEEE Transactions on Power Delivery, 2010, 25, 3105-3112.	4.3	11

#	Article	IF	CITATIONS
19	Method for obtaining the wheel–rail contact location and its application to the normal problem calculation through â€~CONTACT'. Vehicle System Dynamics, 2018, 56, 1734-1746.	3.7	11
20	Using a 2.5D boundary element model to predict the sound distribution on train external surfaces due to rolling noise. Journal of Sound and Vibration, 2020, 486, 115599.	3.9	10
21	Curve Squeal in the Presence of Two Wheel/Rail Contact Points. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , 603-610.	0.3	10
22	Modal analysis of a grand piano soundboard at successive manufacturing stages. Applied Acoustics, 2017, 125, 113-127.	3.3	9
23	Measurements and modelling of dynamic stiffness of a railway vehicle primary suspension element and its use in a structure-borne noise transmission model. Applied Acoustics, 2021, 182, 108232.	3.3	7
24	Rail roughness and rolling noise in tramways. Journal of Physics: Conference Series, 2016, 744, 012147.	0.4	6
25	Effects of rail dynamics and friction characteristics on curve squeal. Journal of Physics: Conference Series, 2016, 744, 012146.	0.4	5
26	A framework to predict the airborne noise inside railway vehicles with application to rolling noise. Applied Acoustics, 2021, 179, 108064.	3.3	5
27	Wind loads analysis at the anchorages of the Talavera de la Reina cable stayed bridge. Case Studies in Structural Engineering, 2014, 1, 1-5.	1.6	4
28	Noise reduction for ballasted track: A comparative socio-economic assessment. International Journal of Transport Development and Integration, 2019, 3, 15-29.	0.9	4
29	The distribution of pantograph aerodynamic noise on train external surfaces and the influence of flow. Applied Acoustics, 2022, 188, 108542.	3.3	4
30	An evaluation of the use of low-cost accelerometers in assessing fishing vessel stability through period of heave motion. , 2016, , .		3
31	Sound transmission loss of windows on high speed trains. Journal of Physics: Conference Series, 2016, 744, 012141.	0.4	3
32	Radiation Efficiency of Beam-stiffened Plate: Experimental Setup and Preliminary Results. Procedia Engineering, 2017, 170, 266-273.	1.2	3
33	Investigation of acoustic transmission beneath a railway vehicle by using statistical energy analysis and an equivalent source model. Mechanical Systems and Signal Processing, 2021, 150, 107296.	8.0	3
34	A modelling approach for noise transmission through extruded panels in railway vehicles. Journal of Sound and Vibration, 2021, 502, 116095.	3.9	3
35	Statistical Description of Wheel Roughness. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , 651-658.	0.3	3
36	Experimental study of noise mitigation measures on a slab track. Applied Acoustics, 2021, 172, 107630.	3.3	2

GIACOMO SQUICCIARINI

#	Article	IF	CITATIONS
37	Vibroacoustic response of stiffened thin plates to incident sound. Applied Acoustics, 2021, 172, 107578.	3.3	2
38	Sound power and vibration levels for two different piano soundboards. Journal of Physics: Conference Series, 2016, 744, 012091.	0.4	1
39	A New Model for the Prediction of Track Sound Radiation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018, , 709-721.	0.3	1
40	A 2.5D acoustic finite element method applied to railway acoustics. Applied Acoustics, 2021, 182, 108270.	3.3	1
41	Estimating the Performance of Wheel Dampers Using Laboratory Methods and a Prediction Tool. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , 39-46.	0.3	1
42	Transposition of Noise Type Test Data for Tracks and Vehicles. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , 213-220.	0.3	1
43	Development of a model to assess acoustic treatments to reduce railway noise. Journal of Physics: Conference Series, 2016, 744, 012148.	0.4	Ο
44	Effect of Ground Conditions and Microphone Position on Railway Noise Measurement Results. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 680-687.	0.3	0
45	Preliminary Study on Characteristics of Sound Radiation from Beam-Stiffened Plates. International Review of Mechanical Engineering, 2016, 10, 272.	0.2	0