
David J Connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8347518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Productivity and management of rice–wheat cropping systems: issues and challenges. Field Crops Research, 2001, 69, 93-132.	2.3	643
2	Organic agriculture cannot feed the world. Field Crops Research, 2008, 106, 187-190.	2.3	194
3	Structure, management and productivity of hedgerow olive orchards: A review. Scientia Horticulturae, 2014, 169, 71-93.	1.7	154
4	Adaptation of olive (Olea europaea L.) to water-limited environments. Australian Journal of Agricultural Research, 2005, 56, 1181.	1.5	115
5	Evaluating physicochemical constraints of Calcarosols on wheat yield in the Victorian southern Mallee. Australian Journal of Agricultural Research, 2003, 54, 487.	1.5	99
6	Interception of photosynthetically active radiation and radiation-use efficiency of wheat, field pea and mustard in a semi-arid environment. Field Crops Research, 2004, 85, 111-124.	2.3	94
7	Radiation-use efficiency of sunflower crops: effects of specific leaf nitrogen and ontogeny. Field Crops Research, 1995, 41, 65-77.	2.3	79
8	Evolution not revolution of farming systems will best feed and green the world. Global Food Security, 2012, 1, 106-113.	4.0	78
9	Stubble retention and tillage in a semi-arid environment: 1. Soil water accumulation during fallow. Field Crops Research, 1997, 52, 209-219.	2.3	75
10	Canopy nitrogen distribution and the photosynthetic performance of sunflower crops during grain filling ? a quantitative analysis. Oecologia, 1995, 101, 274-281.	0.9	70
11	Organically grown crops do not a cropping system make and nor can organic agriculture nearly feed the world. Field Crops Research, 2013, 144, 145-147.	2.3	65
12	Water use by lucerne and effect on crops in the Victorian Wimmera. Australian Journal of Agricultural Research, 2001, 52, 193.	1.5	57
13	Light-associated nitrogen distribution profile in flowering canopies of sunflower (Helianthus) Tj ETQq1 1 0.78431	.4 rgBT /O	verlock 10 Th
14	Yield determination in olive hedgerow orchards. II. Analysis of radiation and fruiting profiles. Crop and Pasture Science, 2009, 60, 443.	0.7	55
15	Towards optimal designs for hedgerow olive orchards. Australian Journal of Agricultural Research, 2006, 57, 1067.	1.5	53
16	Interrelationships between edaphic factors potentially limiting cereal growth on alkaline soils in north-western Victoria. Soil Research, 2003, 41, 277.	0.6	53
17	Nutrient Uptake and Apparent Balances for Rice-Wheat Sequences. III. Potassium. Journal of Plant Nutrition, 2006, 29, 173-187.	0.9	52
18	Nutrient Uptake and Apparent Balances for Rice-Wheat Sequences. I. Nitrogen. Journal of Plant Nutrition, 2006, 29, 137-155.	0.9	52

DAVID J CONNOR

#	Article	IF	CITATIONS
19	Designing cropping systems for efficient use of limited water in southern Australia. European Journal of Agronomy, 2004, 21, 419-431.	1.9	51
20	Effects of tree size on water use of peach (Prunus persica L. Batsch). Irrigation Science, 2006, 24, 59-68.	1.3	51
21	Stubble retention and tillage in a semi-arid environment: 3. Response of wheat. Field Crops Research, 1997, 54, 39-50.	2.3	50
22	Contributions of nitrogen by field pea (Pisum sativum L.) in a continuous cropping sequence compared with a lucerne (Medicago sativa L.)-based pasture ley in the Victorian Wimmera. Australian Journal of Agricultural Research, 2000, 51, 13.	1.5	50
23	A simulation model of the wheat crop in response to water and nitrogen supply: II. Model validation. Agricultural Systems, 1996, 52, 31-55.	3.2	45
24	Transpiration efficiency in crops of semi-dwarf and standard-height sunflower. Irrigation Science, 1991, 12, 87.	1.3	41
25	Root respiration during grain filling in sunflower: The effects of water stress. Plant and Soil, 1990, 121, 57-66.	1.8	40
26	Rate of Leaf Appearance and Final Number of Leaves in Wheat: Effects of Duration and Rate of Change of Photoperiod. Annals of Botany, 1994, 74, 427-436.	1.4	40
27	A simulation model of the wheat crop in response to water and nitrogen supply: I. Model construction. Agricultural Systems, 1996, 52, 1-29.	3.2	38
28	Response of lentil (Lens culinaris) germplasm to high concentrations of soil boron. Euphytica, 2006, 151, 371-382.	0.6	38
29	Yield determination in olive hedgerow orchards. I. Yield and profiles of yield components in north - south and east - west oriented hedgerows. Crop and Pasture Science, 2009, 60, 434.	0.7	36
30	Benchmarking for performance assessment of small and large irrigation schemes along the Senegal Valley in Mauritania. Agricultural Water Management, 2013, 121, 19-26.	2.4	36
31	Organic agriculture and food security: A decade of unreason finally implodes. Field Crops Research, 2018, 225, 128-129.	2.3	35
32	In pursuit of a better world: crop improvement and the CGIAR. Journal of Experimental Botany, 2021, 72, 5158-5179.	2.4	35
33	Row orientation: Applications to productivity and design of hedgerows in horticultural and olive orchards. Scientia Horticulturae, 2015, 187, 15-29.	1.7	34
34	Making science more effective for agriculture. Advances in Agronomy, 2020, , 153-177.	2.4	34
35	Relationships between olive yield components and simulated irradiance within hedgerows of various row orientations and spacings. Scientia Horticulturae, 2016, 198, 12-20.	1.7	33
36	Irrigation performance before and after rehabilitation of a representative, small irrigation scheme besides the Senegal River, Mauritania. Agricultural Water Management, 2010, 97, 901-909.	2.4	30

DAVID J CONNOR

#	Article	IF	CITATIONS
37	Simulation of oil productivity and quality of N–S oriented olive hedgerow orchards in response to structure and interception of radiation. Scientia Horticulturae, 2013, 150, 92-99.	1.7	29
38	Nutrient Uptake and Apparent Balances for Rice-Wheat Sequences. II. Phosphorus. Journal of Plant Nutrition, 2006, 29, 157-172.	0.9	28
39	Challenges and Responses to Ongoing and Projected Climate Change for Dryland Cereal Production Systems throughout the World. Agronomy, 2018, 8, 34.	1.3	28
40	Impact of small-holder irrigation on the agricultural production, food supply and economic prosperity of a representative village beside the Senegal River, Mauritania. Agricultural Systems, 2008, 96, 1-15.	3.2	27
41	Development Rate in Wheat as Affected by Duration and Rate of Change of Photoperiod. Annals of Botany, 1994, 73, 671-677.	1.4	24
42	Why has small-scale irrigation not responded to expectations with traditional subsistence farmers along the Senegal River in Mauritania?. Agricultural Systems, 2012, 110, 152-161.	3.2	24
43	Effect of olive hedgerow orientation on vegetative growth, fruit characteristics and productivity. Scientia Horticulturae, 2015, 192, 60-69.	1.7	24
44	A dynamic model of crop growth and partitioning of biomass. Field Crops Research, 1999, 63, 139-157.	2.3	23
45	Yield characteristics of N–S oriented olive hedgerow orchards, cv. Arbequina. Scientia Horticulturae, 2012, 133, 31-36.	1.7	23
46	Effect of row spacing on vegetative structure, fruit characteristics and oil productivity of N–S and E–W oriented olive hedgerows. Scientia Horticulturae, 2015, 193, 240-248.	1.7	23
47	Crop growth, yield and water use in long fallow and continuous cropping sequences in the Victorian mallee. Australian Journal of Experimental Agriculture, 2002, 42, 971.	1.0	22
48	Long-term Effect of Intra-Row Spacing on Growth and Productivity of Super-High Density Hedgerow Olive Orchards (cv. Arbequina). Frontiers in Plant Science, 2017, 8, 1790.	1.7	22
49	Environmental risk analysis of farming systems in a semi-arid environment: effect of rotations and management practices on deep drainage. Field Crops Research, 2005, 94, 257-271.	2.3	21
50	Drainage and change in soil water storage below the root-zone under long fallow and continuous cropping sequences in the Victorian Mallee. Australian Journal of Agricultural Research, 2003, 54, 663.	1.5	15
51	The effect of boron tolerance, deep ripping with gypsum, and water supply on subsoil water extraction of cereals on an alkaline soil. Australian Journal of Agricultural Research, 2005, 56, 113.	1.5	15
52	Soil water and nitrogen interaction in wheat in a dry season under a fallow - wheat cropping system. Australian Journal of Experimental Agriculture, 1999, 39, 29.	1.0	14
53	Early growth of wheat is more sensitive to salinity than boron at levels encountered in alkaline soils of south-eastern Australia. Australian Journal of Experimental Agriculture, 2006, 46, 1507.	1.0	14
54	Progress Towards Perennial Grains for Prairies and Plains. Outlook on Agriculture, 2022, 51, 32-38.	1.8	12

DAVID J CONNOR

#	Article	IF	CITATIONS
55	Relative yield of food and efficiency of land-use in organic agriculture - A regional study. Agricultural Systems, 2022, 199, 103404.	3.2	12
56	Contribution of sorghum to productivity of small-holder irrigation schemes: On-farm research in the Senegal River Valley, Mauritania. Agricultural Systems, 2013, 115, 72-82.	3.2	11
57	What is the real productivity of organic farming systems?. Outlook on Agriculture, 2021, 50, 125-129.	1.8	11
58	Vegetative structure and distribution of oil yield components and fruit characteristics within olive hedgerows (cv. Arbosana) mechanically pruned annually on alternating sides in San Juan, Argentina. Scientia Horticulturae, 2018, 240, 425-429.	1.7	10
59	Long-term effects of row spacing on radiation interception, fruit characteristics and production of hedgerow olive orchard (cv. Arbequina). Scientia Horticulturae, 2020, 272, 109583.	1.7	10
60	Cassava. , 2021, , 588-633.		10
61	A simulation model-assisted study on water and nitrogen dynamics and their effects on crop performance in the wheat-maize system I: The model. Frontiers of Agriculture in China, 2007, 1, 155-165.	0.2	5
62	Response of Oil Production and Quality to Hedgerow Design in Super-High-Density Olive cv. Arbequina Orchards. Agronomy, 2021, 11, 1632.	1.3	5
63	A simulation model assisted study on water and nitrogen dynamics and their effects on crop performance in the wheat-maize system: (II) model calibration, evaluation and simulated experimentation. Frontiers of Agriculture in China, 2009, 3, 109-121.	0.2	3
64	Intercepted radiation and radiation-use efficiency in sunflower crops grown at conventional and wide inter-row spacings: Measurements and modeled estimates of intercepted radiation. Field Crops Research, 2020, 246, 107684.	2.3	3
65	Long-term effects of row orientation on oil yield and oil yield components of hedgerow olive orchards cv. Arbequina. Scientia Horticulturae, 2022, 294, 110770.	1.7	2