Mei-Chuan Ko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8347458/publications.pdf

Version: 2024-02-01

87401 150775 4,302 122 40 59 citations h-index g-index papers 128 128 128 2912 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Therapeutic potentials of NOP and MOP receptor coactivation for the treatment of pain and opioid abuse. Journal of Neuroscience Research, 2022, 100, 191-202.	1.3	34
2	Enhanced antidepressant-like effects of a delta opioid receptor agonist, SNC80, in rats under inflammatory pain. Pharmacology Biochemistry and Behavior, 2022, 214, 173341.	1.3	4
3	Potential therapeutic targets for the treatment of opioid abuse and pain. Advances in Pharmacology, 2022, 93, 335-371.	1.2	5
4	Functional roles of neuromedin B and gastrin-releasing peptide in regulating itch and pain in the spinal cord of non-human primates. Biochemical Pharmacology, 2022, 198, 114972.	2.0	2
5	Characterization of Early Alzheimer's Disease-Like Pathological Alterations in Non-Human Primates with Aging: A Pilot Study. Journal of Alzheimer's Disease, 2022, 88, 957-970.	1.2	5
6	Morphine acts on spinal dynorphin neurons to cause itch through disinhibition. Science Translational Medicine, 2021, 13 , .	5.8	27
7	Translational value of non-human primates in opioid research. Experimental Neurology, 2021, 338, 113602.	2.0	9
8	Chemogenetic activation of central gastrinâ€releasing peptideâ€expressing neurons elicits itchâ€related scratching behavior in male and female mice. Pharmacology Research and Perspectives, 2021, 9, e00790.	1.1	6
9	Usefulness of the measurement of neurite outgrowth of primary sensory neurons to study cancer-related painful complications. Biochemical Pharmacology, 2021, 188, 114520.	2.0	7
10	Functional Profile of Systemic and Intrathecal Cebranopadol in Nonhuman Primates. Anesthesiology, 2021, 135, 482-493.	1.3	12
11	Epithelia-Sensory Neuron Cross Talk Underlies Cholestatic Itch Induced by Lysophosphatidylcholine. Gastroenterology, 2021, 161, 301-317.e16.	0.6	57
12	IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron, 2021, 109, 2691-2706.e5.	3.8	93
13	STING controls nociception via type I interferon signalling in sensory neurons. Nature, 2021, 591, 275-280.	13.7	107
14	Antinociceptive, reinforcing, and pruritic effects of the G-protein signalling-biased mu opioid receptor agonist PZM21 in non-human primates. British Journal of Anaesthesia, 2020, 125, 596-604.	1.5	24
15	Pleiotropic Effects of Kappa Opioid Receptor-Related Ligands in Non-human Primates. Handbook of Experimental Pharmacology, 2020, 271, 435-452.	0.9	3
16	GRP receptor and AMPA receptor cooperatively regulate itch-responsive neurons in the spinal dorsal horn. Neuropharmacology, 2020, 170, 108025.	2.0	27
17	Antiâ \in PD-1 treatment impairs opioid antinociception in rodents and nonhuman primates. Science Translational Medicine, 2020, 12, .	5.8	54
18	Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch. Cell Reports, 2020, 31, 107472.	2.9	69

#	Article	IF	CITATIONS
19	Nociceptin/Orphanin FQ Peptide Receptor-Related Ligands as Novel Analgesics. Current Topics in Medicinal Chemistry, 2020, 20, 2878-2888.	1.0	26
20	Functional roles of neuromedin B and gastrinâ€releasing peptide in regulating itch and pain in the spinal cord of primates. FASEB Journal, 2020, 34, 1-1.	0.2	1
21	Effects of stimulation of mu opioid and nociceptin/orphanin FQ peptide (NOP) receptors on alcohol drinking in rhesus monkeys. Neuropsychopharmacology, 2019, 44, 1476-1484.	2.8	12
22	Effects of NOP-Related Ligands in Nonhuman Primates. Handbook of Experimental Pharmacology, 2019, 254, 323-343.	0.9	17
23	Neuromedin B Induces Acute Itch in Mice via the Activation of Peripheral Sensory Neurons. Acta Dermato-Venereologica, 2019, 99, 587-893.	0.6	5
24	BU10038 as a safe opioid analgesic with fewer side-effects after systemic and intrathecal administration in primates. British Journal of Anaesthesia, 2019, 122, e146-e156.	1.5	42
25	Comparison of Reinforcing and Antinociceptive Effects of Agonists with Mixed NOP and MOP Receptor Agonist Action in Nonhuman Primates. FASEB Journal, 2019, 33, 498.4.	0.2	0
26	A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Science Translational Medicine, 2018, 10, .	5.8	100
27	Differential mRNA expression of neuroinflammatory modulators in the spinal cord and thalamus of type 2 diabetic monkeys. Journal of Diabetes, 2018, 10, 886-895.	0.8	2
28	Synthesis of Enantiopure PZM21: A Biased Agonist of the Muâ€Opioid Receptor. European Journal of Organic Chemistry, 2018, 2018, 4006-4012.	1.2	3
29	Reinforcing, Antinociceptive, and Pruritic Effects of a G Proteinâ€Biased Mu Opioid Receptor Agonist, PZM21, in Primates. FASEB Journal, 2018, 32, 683.3.	0.2	0
30	Spinal GRP mediates itch in nonhuman primates. Pain Research, 2018, 33, 308-314.	0.1	0
31	Pharmacological studies on the NOP and opioid receptor agonist PWT2-[Dmt1]N/OFQ(1-13). European Journal of Pharmacology, 2017, 794, 115-126.	1.7	23
32	Altered expression of glial markers, chemokines, and opioid receptors in the spinal cord of type 2 diabetic monkeys. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 274-283.	1.8	23
33	Central N/OFQ-NOP Receptor System in Pain Modulation. Advances in Pharmacology, 2016, 75, 217-243.	1.2	50
34	A novel orvinol analog, BU08028, as a safe opioid analgesic without abuse liability in primates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5511-8.	3.3	87
35	Spinal Functions of B-Type Natriuretic Peptide, Gastrin-Releasing Peptide, and Their Cognate Receptors for Regulating Itch in Mice. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 596-603.	1.3	32
36	Systemic Effects of ATâ€121 as a Safe Analgesic without Abuse Liability in Primates. FASEB Journal, 2016, 30, 927.10.	0.2	0

#	Article	IF	Citations
37	Supraspinal actions of nociceptin/orphanin <scp>FQ</scp> , morphine and substance <scp>P</scp> in regulating pain and itch in nonâ€human primates. British Journal of Pharmacology, 2015, 172, 3302-3312.	2.7	46
38	Spinal antinociceptive effects of the novel <scp>NOP</scp> receptor agonist <scp>PWT2</scp> â€nociceptin/orphanin <scp>FQ</scp> in mice and monkeys. British Journal of Pharmacology, 2015, 172, 3661-3670.	2.7	25
39	Distinct functions of opioid-related peptides and gastrin-releasing peptide in regulating itch and pain in the spinal cord of primates. Scientific Reports, 2015, 5, 11676.	1.6	40
40	TC-2559, an $\hat{l}\pm4\hat{l}^22$ nicotinic acetylcholine receptor agonist, suppresses the expression of CCL3 and IL- $1\hat{l}^2$ through STAT3 inhibition in cultured murine macrophages. Journal of Pharmacological Sciences, 2015, 128, 83-86.	1.1	11
41	Neuraxial Opioid-Induced Itch and Its Pharmacological Antagonism. Handbook of Experimental Pharmacology, 2015, 226, 315-335.	0.9	39
42	BU08028 Displays a Promising Therapeutic Profile as an Analgesic in Monkeys. FASEB Journal, 2015, 29, 616.2.	0.2	1
43	Supraspinal Actions of N/OFQ, Morphine and Substance P in Regulating Pain and Itch in Nonhuman Primates. FASEB Journal, 2015, 29, 929.5.	0.2	O
44	Functional plasticity of the <scp>N</scp> / <scp>OFQâ€NOP</scp> receptor system determines analgesic properties of <scp>NOP</scp> receptor agonists. British Journal of Pharmacology, 2014, 171, 3777-3800.	2.7	109
45	Differential effects of opioid-related ligands and NSAIDs in nonhuman primate models of acute and inflammatory pain. Psychopharmacology, 2014, 231, 1377-1387.	1.5	34
46	Effects of the NOP agonist SCH221510 on producing and attenuating reinforcing effects as measured by drug self-administration in rats. European Journal of Pharmacology, 2014, 745, 182-189.	1.7	28
47	Pharmacokinetic evidence for the long-lasting effect of nor-binaltorphimine, a potent kappa opioid receptor antagonist, in mice. Neuroscience Letters, 2013, 552, 98-102.	1.0	28
48	<scp>[Dmt¹]N/OFQ(1–13)â€NH₂</scp> : a potent nociceptin/orphaninFQ and opioid receptor universal agonist. British Journal of Pharmacology, 2013, 168, 151-162.	2.7	38
49	Pharmacological Investigation of NOP-Related Ligands as Analgesics without Abuse Liability. ACS Symposium Series, 2013, , 393-416.	0.5	6
50	The Therapeutic Potential of Nociceptin/Orphanin FQ Receptor Agonists as Analgesics without Abuse Liability. ACS Chemical Neuroscience, 2013, 4, 214-224.	1.7	68
51	Effects of Spinally Administered Bifunctional Nociceptin/Orphanin FQ Peptide Receptor/ <i>ilux/i>Opioid Receptor Ligands in Mouse Models of Neuropathic and Inflammatory Pain. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 11-22.</i>	1.3	56
52	Physiological Function of Gastrin-Releasing Peptide and Neuromedin B Receptors in Regulating Itch Scratching Behavior in the Spinal Cord of Mice. PLoS ONE, 2013, 8, e67422.	1.1	53
53	Role of gastrinâ€releasing peptide and neuromedin B receptors in the neurotransmission of itch in the spinal cord of mice. FASEB Journal, 2013, 27, 1176.6.	0.2	0
54	Long-Lasting Effects of a PEGylated Mutant Cocaine Esterase (CocE) on the Reinforcing and Discriminative Stimulus Effects of Cocaine in Rats. Neuropsychopharmacology, 2012, 37, 1092-1103.	2.8	21

#	Article	IF	CITATIONS
55	Roles of $\hat{l}^{1}\!\!/\!\!4$ -Opioid Receptors and Nociceptin/Orphanin FQ Peptide Receptors in Buprenorphine-Induced Physiological Responses in Primates. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 72-81.	1.3	91
56	Repeated Administration of a Mutant Cocaine Esterase: Effects on Plasma Cocaine Levels, Cocaine-Induced Cardiovascular Activity, and Immune Responses in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 205-213.	1.3	14
57	The Fate of Bacterial Cocaine Esterase (CocE): An In Vivo Study of CocE-Mediated Cocaine Hydrolysis, CocE Pharmacokinetics, and CocE Elimination. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 83-95.	1.3	8
58	Roles of MOP and NOP receptors in regulating buprenorphineâ€induced physiological responses in monkeys. FASEB Journal, 2012, 26, 1123.2.	0.2	0
59	Pharmacological characterization of NOP receptor agonists as abuseâ€free and constipationâ€free analgesics in monkeys. FASEB Journal, 2012, 26, .	0.2	3
60	Pharmacokinetic evidence for the longâ€lasting effects of norâ€binaltorphimine (norâ€BNI). FASEB Journal, 2012, 26, .	0.2	1
61	[Dmt1]N/OFQ(1â€13)â€NH2, a potent NOP/MOP receptor mixed agonist. FASEB Journal, 2012, 26, 836.1.	0.2	1
62	Effects of a long-acting mutant bacterial cocaine esterase on acute cocaine toxicity in rats. Drug and Alcohol Dependence, 2011, 118, 158-165.	1.6	13
63	The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology, 2011, 213, 53-60.	1.5	35
64	The Role of Central Gastrin-Releasing Peptide and Neuromedin B Receptors in the Modulation of Scratching Behavior in Rats. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 822-829.	1.3	40
65	Design, Preparation, and Characterization of High-Activity Mutants of Human Butyrylcholinesterase Specific for Detoxification of Cocaine. Molecular Pharmacology, 2011, 79, 290-297.	1.0	81
66	Amelioration of the Cardiovascular Effects of Cocaine in Rhesus Monkeys by a Long-Acting Mutant Form of Cocaine Esterase. Neuropsychopharmacology, 2011, 36, 1047-1059.	2.8	17
67	Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time. Molecular Pharmacology, 2011, 80, 1056-1065.	1.0	19
68	PEGylation of bacterial cocaine esterase for protection against protease digestion and immunogenicity. Journal of Controlled Release, 2010, 142, 174-179.	4.8	32
69	Long-lasting antinociceptive spinal effects in primates of the novel nociceptin/orphanin FQ receptor agonist UFP-112. Pain, 2010, 148, 107-113.	2.0	70
70	Structural analysis of thermostabilizing mutations of cocaine esterase. Protein Engineering, Design and Selection, 2010, 23, 537-547.	1.0	45
71	Dual-Process Mechanism. , 2010, , 442-442.		0
72	The central antidepressantâ€like and antinociceptive effects of a delta opioid receptor agonist SNC80 in rats. FASEB Journal, 2010, 24, 581.3.	0.2	0

#	Article	IF	CITATIONS
73	Effects of intradermal administration of endogenous opioid peptides, βâ€endorphin and dynorphinâ€A, on scratching behavior in mice. FASEB Journal, 2010, 24, .	0.2	0
74	Behavioral Effects of a Synthetic Agonist Selective for Nociceptin/Orphanin FQ Peptide Receptors in Monkeys. Neuropsychopharmacology, 2009, 34, 2088-2096.	2.8	87
75	Effects of Atypical κ-Opioid Receptor Agonists on Intrathecal Morphine-Induced Itch and Analgesia in Primates. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 193-200.	1.3	81
76	Cocaine Esterase Prevents Cocaine-Induced Toxicity and the Ongoing Intravenous Self-Administration of Cocaine in Rats. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 445-455.	1.3	41
77	Thermostable Variants of Cocaine Esterase for Long-Time Protection against Cocaine Toxicity. Molecular Pharmacology, 2009, 75, 318-323.	1.0	81
78	Effects of cocaine esterase following its repeated administration with cocaine in mice. Drug and Alcohol Dependence, 2009, 101, 202-209.	1.6	19
79	Seizure activity involved in the up-regulation of BDNF mRNA expression by activation of central Mu opioid receptors. Neuroscience, 2009, 161, 301-310.	1.1	29
80	Antinociceptive Effects of Nociceptin/Orphanin FQ Administered Intrathecally in Monkeys. Journal of Pain, 2009, 10, 509-516.	0.7	76
81	Characterizing the Acute Cardiovascular Toxicities of Cocaine in Freely Moving Rhesus Monkeys. FASEB Journal, 2009, 23, 589.6.	0.2	0
82	Comparison of the opioid receptor antagonist properties of naltrexone and $6\hat{l}^2$ -naltrexol in morphine-na \tilde{A} -ve and morphine-dependent mice. European Journal of Pharmacology, 2008, 583, 48-55.	1.7	20
83	Effects of mu, kappa, and delta opioid receptor agonists on the function of hypothalamic–pituitary–adrenal axis in monkeys. Psychoneuroendocrinology, 2008, 33, 478-486.	1.3	51
84	Most Efficient Cocaine Hydrolase Designed by Virtual Screening of Transition States. Journal of the American Chemical Society, 2008, 130, 12148-12155.	6.6	164
85	The Spinal Antinociceptive Effects of Endomorphins in Rats: Behavioral and G Protein Functional Studies. Anesthesia and Analgesia, 2008, 106, 1873-1881.	1.1	19
86	Effects of a novel kappa opioid receptor agonist, TRKâ€820, on intrathecal morphineâ€induced itch and analgesia in monkeys. FASEB Journal, 2008, 22, 712.4.	0.2	0
87	Cocaine Esterase: Interactions with Cocaine and Immune Responses in Mice. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 926-933.	1.3	41
88	Central îº-opioid receptor-mediated antidepressant-like effects of nor-Binaltorphimine: Behavioral and BDNF mRNA expression studies. European Journal of Pharmacology, 2007, 570, 89-96.	1.7	80
89	Pharmacological, Pharmacokinetic, and Primate Analgesic Efficacy Profile of the Novel Bradykinin B1 Receptor Antagonist ELN441958. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 619-630.	1.3	27
90	Effects of Butorphanol on Morphine-induced Itch and Analgesia in Primates. Anesthesiology, 2007, 107, 478-485.	1.3	56

#	Article	IF	Citations
91	Endogenous opioids upregulate brain-derived neurotrophic factor mRNA through $\hat{\Gamma}$ and $\hat{A}\mu$ -opioid receptors independent of antidepressant-like effects. European Journal of Neuroscience, 2006, 23, 984-994.	1.2	69
92	Differential in Vivo Potencies of Naltrexone and $6\hat{1}^2$ -Naltrexol in the Monkey. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 772-779.	1.3	42
93	Effects of Intrathecally Administered Nociceptin/Orphanin FQ in Monkeys: Behavioral and Mass Spectrometric Studies. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1257-1264.	1.3	66
94	How best to fight that nasty itch - from new insights into the neuroimmunological, neuroendocrine, and neurophysiological bases of pruritus to novel therapeutic approaches. Experimental Dermatology, 2005, 14, 225-225.	1.4	55
95	Viewpoint 2. Experimental Dermatology, 2005, 14, 227-229.	1.4	3
96	Antinociceptive, hypothermic, hypotensive, and reinforcing effects of a novel neurotensin receptor agonist, NT69L, in rhesus monkeys. Pharmacology Biochemistry and Behavior, 2005, 80, 341-349.	1.3	43
97	The Role of Central $\hat{l}\frac{1}{4}$ Opioid Receptors in Opioid-Induced Itch in Primates. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 169-176.	1.3	132
98	Characterization of the complex morphinan derivative BU72 as a high efficacy, long-lasting mu-opioid receptor agonist. European Journal of Pharmacology, 2004, 499, 107-116.	1.7	44
99	Electrospray sample deposition for matrix-assisted laser desorption/ionization(MALDI) and atmospheric pressure MALDI mass spectrometry with attomole detection limits. Rapid Communications in Mass Spectrometry, 2004, 18, 1193-1200.	0.7	57
100	Effect of opioid receptor antagonists on hypothalamic–pituitary–adrenal activity in rhesus monkeys. Psychoneuroendocrinology, 2003, 28, 513-528.	1.3	33
101	Ultra-long antagonism of kappa opioid agonist-induced diuresis by intracisternal nor-binaltorphimine in monkeys. Brain Research, 2003, 982, 38-44.	1.1	28
102	Activation of \hat{I}^2 -Opioid Receptors Inhibits Pruritus Evoked by Subcutaneous or Intrathecal Administration of Morphine in Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 173-179.	1.3	106
103	Studies of $\hat{l}^{1}\!\!/_{4}$ -, \hat{l}^{2} -, and \hat{l} -Opioid Receptor Density and G Protein Activation in the Cortex and Thalamus of Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 179-186.	1.3	41
104	Characterization of scratching responses in rats following centrally administered morphine or bombesin. Behavioural Pharmacology, 2003, 14, 501-508.	0.8	32
105	Relative Reinforcing Effects of Three Opioids with Different Durations of Action. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 698-704.	1.3	101
106	Orphanin FQ inhibits capsaicin-induced thermal nociception in monkeys by activation of peripheral ORL1 receptors. British Journal of Pharmacology, 2002, 135, 943-950.	2.7	48
107	Differential Densities of Mu, Kappa, and Delta Opioid Receptors and Their Receptor-G Protein Interactions in the Thalamus and Spinal Cord of Monkeys. Anesthesiology, 2002, 96, A792.	1.3	1
108	Kappa Opioid Receptor-Mediated Anti-Pruritic Action in Intrathecal Morphine-Induced Scratching Responses in Monkeys. Anesthesiology, 2002, 96, A1054.	1.3	0

#	Article	IF	CITATIONS
109	GR89,696: a potent kappa-opioid agonist with subtype selectivity in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics, 2001, 298, 1049-59.	1.3	32
110	An Experimental Itch Model in Monkeys. Anesthesiology, 2000, 92, 795-805.	1.3	104
111	Diltiazem enhances the analgesic but not the respiratory depressant effects of morphine in rhesus monkeys. European Journal of Pharmacology, 2000, 397, 85-92.	1.7	15
112	Local inhibitory effects of dynorphin A-(1–17) on capsaicin-induced thermal allodynia in rhesus monkeys. European Journal of Pharmacology, 2000, 402, 69-76.	1.7	22
113	Local administration of mu or kappa opioid agonists attenuates capsaicin-induced thermal hyperalgesia via peripheral opioid receptors in rats. Psychopharmacology, 2000, 148, 180-185.	1.5	21
114	Local administration of \hat{l} " 9 -tetrahydrocannabinol attenuates capsaicin-induced thermal nociception in rhesus monkeys: a peripheral cannabinoid action. Psychopharmacology, 1999, 143, 322-326.	1.5	51
115	The effects of the phyllolitorin analogue [desTrp3,Leu8]phyllolitorin on scratching induced by bombesin and related peptides in rats. Brain Research, 1999, 839, 194-198.	1.1	9
116	ANTAGONISM OF KAPPA OPIOID-INDUCED ANTINOCICEPTION BY PARTIAL OPIOID AGONISTS IN RHESUS MONKEYS. Behavioural Pharmacology, 1999, 10, S54.	0.8	0
117	Activation of peripheral kappa opioid receptors inhibits capsaicin-induced thermal nociception in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics, 1999, 289, 378-85.	1.3	30
118	Intracisternal nor-binaltorphimine distinguishes central and peripheral kappa-opioid antinociception in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics, 1999, 291, 1113-20.	1.3	42
119	The role of peripheral mu opioid receptors in the modulation of capsaicin-induced thermal nociception in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics, 1998, 286, 150-6.	1.3	39
120	Differentiation of kappa opioid agonist-induced antinociception by naltrexone apparent pA2 analysis in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics, 1998, 285, 518-26.	1.3	59
121	kappa-Opioid receptor binding populations in rhesus monkey brain: relationship to an assay of thermal antinociception. Journal of Pharmacology and Experimental Therapeutics, 1998, 285, 595-601.	1.3	46
122	Chronic effects of haloperidol and SCH23390 on operant and licking behaviors in the rat. Chinese Journal of Physiology, 1995, 38, 65-73.	0.4	15