Han Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8346878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving the synergistic combination of programmed deathâ€1/programmed death ligandâ€1 blockade and radiotherapy by targeting the hypoxic tumour microenvironment. Journal of Medical Imaging and Radiation Oncology, 2022, 66, 560-574.	1.8	3
2	RARE-08. POTENTIAL NEW THERAPIES FOR DIFFUSE INTRINSIC PONTINE GLIOMAS IDENTIFIED THROUGH HIGH THROUGHPUT DRUG SCREENING. Neuro-Oncology, 2021, 23, i42-i42.	1.2	2
3	Targeting Glucose Metabolism of Cancer Cells with Dichloroacetate to Radiosensitize High-Grade Gliomas. International Journal of Molecular Sciences, 2021, 22, 7265.	4.1	26
4	EXTH-41. IMPROVING THE RADIOSENSITIVITY OF DIFFUSE INTRINSIC PONTINE GLIOMAS (DIPG) BY TARGETING HYPOXIA AND MITOCHONDRIAL METABOLISM. Neuro-Oncology, 2021, 23, vi172-vi172.	1.2	0
5	DDRE-07. TARGETING TUMOR HYPOXIA AND MITOCHONDRIAL METABOLISM WITH ANTI-PARASITIC DRUGS AS AN APPROACH TO IMPROVE THE RADIOSENSITIVITY OF DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2021, 23, vi75-vi75.	1.2	Ο
6	Targeting reduced mitochondrial DNA quantity as a therapeutic approach in pediatric high-grade gliomas. Neuro-Oncology, 2020, 22, 139-151.	1.2	49
7	Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. Journal of Experimental and Clinical Cancer Research, 2020, 39, 208.	8.6	79
8	Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. Journal of Experimental and Clinical Cancer Research, 2020, 39, 129.	8.6	27
9	Constitutive CHK1 Expression Drives a pSTAT3–CIP2A Circuit that Promotes Glioblastoma Cell Survival and Growth. Molecular Cancer Research, 2020, 18, 709-722.	3.4	15
10	DIPG-13. TARGETING HYPOXIA AND MITOCHONDRIA WITH REPURPOSED METABOLIC DRUGS AS AN APPROACH TO RADIOSENSITIZATION FOR DIFFUSE INTRINSIC PONTINE GLIOMAS (DIPG). Neuro-Oncology, 2020, 22, iii289-iii289.	1.2	0
11	DIPG-07. HIGH THROUGHPUT DRUG SCREENING IDENTIFIES POTENTIAL NEW THERAPIES FOR DIFFUSE INTRINSIC PONTINE GLIOMAS (DIPGs). Neuro-Oncology, 2020, 22, iii288-iii288.	1.2	2
12	DIPG-17. IMPROVING THE RADIOSENSITIVITY OF DIFFUSE INTRINSIC PONTINE GLIOMAS BY MODULATING BIOENERGETIC PATHWAYS. Neuro-Oncology, 2019, 21, ii72-ii72.	1.2	0
13	International experience in the development of patient-derived xenograft models of diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2019, 141, 253-263.	2.9	30
14	Abstract 4864: Targeted melanoma therapies as radiosensitizers. , 2019, , .		0
15	Short Diffusion Time Diffusion-Weighted Imaging With Oscillating Gradient Preparation as an Early Magnetic Resonance Imaging Biomarker for Radiation Therapy Response Monitoring in Glioblastoma: A Preclinical Feasibility Study. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1014-1023.	0.8	11
16	Dual targeting of mitochondrial function and mTOR pathway as a therapeutic strategy for diffuse intrinsic pontine glioma. Oncotarget, 2018, 9, 7541-7556.	1.8	29
17	DIPG-02. RADIOSENSITIVITY OF DIPG CELLS IS ENHANCED BY TARGETING GLUCOSE METABOLISM IN VITRO AND IN VIVO. Neuro-Oncology, 2017, 19, iv5-iv5.	1.2	0
18	DIPG-05. COMBINATION OF SYNTHETIC RETINOID FENRETINIDE WITH RECEPTOR TYROSINE KINASE INHIBITOR PONATINIB AS AÂPOTENTIAL NEW APPROACH AGAINST DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2017, 19, iv5-iv6.	1.2	1

Han Shen

#	Article	IF	CITATIONS
19	DIPG-04. COMBINED TARGETING OF CALCIUM SIGNALLING AND RTK/PI3K PATHWAY IS AÂNOVEL THERAPEUTIC APPROACH AGAINST DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2017, 19, iv5-iv5.	1.2	1
20	DIPG-09. TRX-E-009-1 IS AÂNOVEL AND AÂPOTENT THERAPEUTIC AGENT FOR DIFFUSE INTRINSIC PONTINE GLIOMAS. Neuro-Oncology, 2017, 19, iv6-iv6.	1.2	0
21	HG-20COMBINATION OF EPIGENETIC MODIFIERS CBL0137 AND PANOBINOSTAT IS HIGHLY POTENT IN VITRO AND IN VIVO FOR DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2016, 18, iii51.4-iii51.	1.2	0
22	HG-04DICHLOROACETATE AND METFORMIN COMBINE TO MODULATE GLUCOSE METABOLISM AND POTENTLY SENSITISE DIPG CELLS TO RADIATION THERAPY. Neuro-Oncology, 2016, 18, iii48.3-iii48.	1.2	0
23	HG-19COMBINED TARGETING OF MITOCHONDRIAL FUNCTION AND mTOR IS A POTENT NOVEL THERAPEUTIC APPROACH FOR DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2016, 18, iii51.3-iii51.	1.2	1
24	HG-25FENRETINIDE TARGETS THE RTK-PI3K PATHWAY IN DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2016, 18, iii52.5-iii53.	1.2	0
25	The evolving roles and controversies of radiotherapy in the treatment of glioblastoma. Journal of Medical Radiation Sciences, 2016, 63, 114-123.	1.5	19
26	Resistance of Glioblastomas to Radiation Therapy. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 55-68.	0.1	0
27	Sensitization of Glioblastoma Cells to Irradiation by Modulating the Glucose Metabolism. Molecular Cancer Therapeutics, 2015, 14, 1794-1804.	4.1	95
28	Dual-targeting of aberrant glucose metabolism in glioblastoma. Journal of Experimental and Clinical Cancer Research, 2015, 34, 14.	8.6	41
29	DD-04 * PENAO: A POTENT MITOCHONDRIAL TARGETED INHIBITOR FOR GLIOBLASTOMA. Neuro-Oncology, 2014, 16, v60-v61.	1.2	4
30	ET-56 * SENSITIZATION OF GLIOBLASTOMA CELLS TO IRRADIATION BY MODULATING THE GLUCOSE METABOLISM. Neuro-Oncology, 2014, 16, v91-v91.	1.2	0
31	Keeping GBM in check by targeting CHK1-CIP2A axis Journal of Clinical Oncology, 2014, 32, 2036-2036.	1.6	0
32	Abstract 1600: Keeping glioblastoma (GBM)in check by targeting the CHK1-STAT3-CIP2A axis. , 2014, , .		0
33	A Metabolic Shift Favoring Sphingosine 1-Phosphate at the Expense of Ceramide Controls Glioblastoma Angiogenesis. Journal of Biological Chemistry, 2013, 288, 37355-37364.	3.4	90
34	Abstract 1701: PENAO, a novel mitochondria-targeted agent, has shown potent antitumor effect on glioblastomain vitroandin vivo , 2013, , .		1
35	Dehiscence of Corticosteroid-Induced Abdominal Striae in a 14-Year-Old Boy Treated With Bevacizumab for Recurrent Glioblastoma. Journal of Child Neurology, 2012, 27, 927-929.	1.4	17
36	The Complexities of Resistance to Bevacizumab. Journal of Cancer Therapy, 2012, 03, 491-503.	0.4	4

#	Article	IF	CITATIONS
37	Abstract 1131: Blocking ATP delivery to hexokinase II in glioblastoma is a promising therapeutic strategy. , 2012, , .		0