Han Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8346878/publications.pdf

Version: 2024-02-01

		840585	677027
37	551	11	22
papers	citations	h-index	g-index
39	39	39	1114
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sensitization of Glioblastoma Cells to Irradiation by Modulating the Glucose Metabolism. Molecular Cancer Therapeutics, 2015, 14, 1794-1804.	1.9	95
2	A Metabolic Shift Favoring Sphingosine 1-Phosphate at the Expense of Ceramide Controls Glioblastoma Angiogenesis. Journal of Biological Chemistry, 2013, 288, 37355-37364.	1.6	90
3	Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. Journal of Experimental and Clinical Cancer Research, 2020, 39, 208.	3.5	79
4	Targeting reduced mitochondrial DNA quantity as a therapeutic approach in pediatric high-grade gliomas. Neuro-Oncology, 2020, 22, 139-151.	0.6	49
5	Dual-targeting of aberrant glucose metabolism in glioblastoma. Journal of Experimental and Clinical Cancer Research, 2015, 34, 14.	3.5	41
6	International experience in the development of patient-derived xenograft models of diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2019, 141, 253-263.	1.4	30
7	Dual targeting of mitochondrial function and mTOR pathway as a therapeutic strategy for diffuse intrinsic pontine glioma. Oncotarget, 2018, 9, 7541-7556.	0.8	29
8	Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. Journal of Experimental and Clinical Cancer Research, 2020, 39, 129.	3.5	27
9	Targeting Glucose Metabolism of Cancer Cells with Dichloroacetate to Radiosensitize High-Grade Gliomas. International Journal of Molecular Sciences, 2021, 22, 7265.	1.8	26
10	The evolving roles and controversies of radiotherapy in the treatment of glioblastoma. Journal of Medical Radiation Sciences, 2016, 63, 114-123.	0.8	19
11	Dehiscence of Corticosteroid-Induced Abdominal Striae in a 14-Year-Old Boy Treated With Bevacizumab for Recurrent Glioblastoma. Journal of Child Neurology, 2012, 27, 927-929.	0.7	17
12	Constitutive CHK1 Expression Drives a pSTAT3–CIP2A Circuit that Promotes Glioblastoma Cell Survival and Growth. Molecular Cancer Research, 2020, 18, 709-722.	1.5	15
13	Short Diffusion Time Diffusion-Weighted Imaging With Oscillating Gradient Preparation as an Early Magnetic Resonance Imaging Biomarker for Radiation Therapy Response Monitoring in Glioblastoma: A Preclinical Feasibility Study. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1014-1023.	0.4	11
14	DD-04 * PENAO: A POTENT MITOCHONDRIAL TARGETED INHIBITOR FOR GLIOBLASTOMA. Neuro-Oncology, 2014, 16, v60-v61.	0.6	4
15	The Complexities of Resistance to Bevacizumab. Journal of Cancer Therapy, 2012, 03, 491-503.	0.1	4
16	Improving the synergistic combination of programmed deathâ€1/programmed death ligandâ€1 blockade and radiotherapy by targeting the hypoxic tumour microenvironment. Journal of Medical Imaging and Radiation Oncology, 2022, 66, 560-574.	0.9	3
17	RARE-08. POTENTIAL NEW THERAPIES FOR DIFFUSE INTRINSIC PONTINE GLIOMAS IDENTIFIED THROUGH HIGH THROUGHPUT DRUG SCREENING. Neuro-Oncology, 2021, 23, i42-i42.	0.6	2
18	DIPG-07. HIGH THROUGHPUT DRUG SCREENING IDENTIFIES POTENTIAL NEW THERAPIES FOR DIFFUSE INTRINSIC PONTINE GLIOMAS (DIPGs). Neuro-Oncology, 2020, 22, iii288-iii288.	0.6	2

#	Article	IF	CITATIONS
19	HG-19COMBINED TARGETING OF MITOCHONDRIAL FUNCTION AND mTOR IS A POTENT NOVEL THERAPEUTIC APPROACH FOR DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2016, 18, iii51.3-iii51.	0.6	1
20	DIPG-05. COMBINATION OF SYNTHETIC RETINOID FENRETINIDE WITH RECEPTOR TYROSINE KINASE INHIBITOR PONATINIB AS AÂPOTENTIAL NEW APPROACH AGAINST DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2017, 19, iv5-iv6.	0.6	1
21	DIPG-04. COMBINED TARGETING OF CALCIUM SIGNALLING AND RTK/PI3K PATHWAY IS AÂNOVEL THERAPEUTIC APPROACH AGAINST DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2017, 19, iv5-iv5.	0.6	1
22	Abstract 1701: PENAO, a novel mitochondria-targeted agent, has shown potent antitumor effect on glioblastomain vitroandin vivo , 2013 , , .		1
23	ET-56 * SENSITIZATION OF GLIOBLASTOMA CELLS TO IRRADIATION BY MODULATING THE GLUCOSE METABOLISM. Neuro-Oncology, 2014, 16, v91-v91.	0.6	O
24	HG-20COMBINATION OF EPIGENETIC MODIFIERS CBL0137 AND PANOBINOSTAT IS HIGHLY POTENT IN VITRO AND IN VIVO FOR DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2016, 18, iii51.4-iii51.	0.6	0
25	HG-04DICHLOROACETATE AND METFORMIN COMBINE TO MODULATE GLUCOSE METABOLISM AND POTENTLY SENSITISE DIPG CELLS TO RADIATION THERAPY. Neuro-Oncology, 2016, 18, iii48.3-iii48.	0.6	O
26	HG-25FENRETINIDE TARGETS THE RTK-PI3K PATHWAY IN DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2016, 18, iii52.5-iii53.	0.6	0
27	DIPG-02. RADIOSENSITIVITY OF DIPG CELLS IS ENHANCED BY TARGETING GLUCOSE METABOLISM IN VITRO AND IN VIVO. Neuro-Oncology, 2017, 19, iv5-iv5.	0.6	0
28	DIPG-09. TRX-E-009-1 IS AÂNOVEL AND AÂPOTENT THERAPEUTIC AGENT FOR DIFFUSE INTRINSIC PONTINE GLIOMAS. Neuro-Oncology, 2017, 19, iv6-iv6.	0.6	0
29	DIPG-17. IMPROVING THE RADIOSENSITIVITY OF DIFFUSE INTRINSIC PONTINE GLIOMAS BY MODULATING BIOENERGETIC PATHWAYS. Neuro-Oncology, 2019, 21, ii72-ii72.	0.6	0
30	Abstract 1131: Blocking ATP delivery to hexokinase II in glioblastoma is a promising the rapeutic strategy. , 2012, , .		0
31	Keeping GBM in check by targeting CHK1-CIP2A axis Journal of Clinical Oncology, 2014, 32, 2036-2036.	0.8	O
32	Abstract 1600: Keeping glioblastoma (GBM)in check by targeting the CHK1-STAT3-CIP2A axis. , 2014, , .		0
33	Resistance of Glioblastomas to Radiation Therapy. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 55-68.	0.1	O
34	Abstract 4864: Targeted melanoma therapies as radiosensitizers. , 2019, , .		0
35	DIPG-13. TARGETING HYPOXIA AND MITOCHONDRIA WITH REPURPOSED METABOLIC DRUGS AS AN APPROACH TO RADIOSENSITIZATION FOR DIFFUSE INTRINSIC PONTINE GLIOMAS (DIPG). Neuro-Oncology, 2020, 22, iii289-iii289.	0.6	О
36	EXTH-41. IMPROVING THE RADIOSENSITIVITY OF DIFFUSE INTRINSIC PONTINE GLIOMAS (DIPG) BY TARGETING HYPOXIA AND MITOCHONDRIAL METABOLISM. Neuro-Oncology, 2021, 23, vi172-vi172.	0.6	0

#	Article	IF	CITATIONS
37	DDRE-07. TARGETING TUMOR HYPOXIA AND MITOCHONDRIAL METABOLISM WITH ANTI-PARASITIC DRUGS AS AN APPROACH TO IMPROVE THE RADIOSENSITIVITY OF DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2021, 23, vi75-vi75.	0.6	O