
Cheng Chao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8346665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€Performance and Ultra‧table Lithiumâ€Ion Batteries Based on MOFâ€Derived ZnO@ZnO Quantum Dots/C Core–Shell Nanorod Arrays on a Carbon Cloth Anode. Advanced Materials, 2015, 27, 2400-2405.	21.0	614
2	Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy and Environmental Science, 2020, 13, 3330-3360.	30.8	576
3	MS ₂ (M = Co and Ni) Hollow Spheres with Tunable Interiors for Highâ€Performance Supercapacitors and Photovoltaics. Advanced Functional Materials, 2014, 24, 2155-2162.	14.9	398
4	In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chemical Communications, 2013, 49, 10178.	4.1	384
5	Synergistic Manipulation of Zn ²⁺ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF ₂ Matrix for Longâ€Lifespan and Dendriteâ€Free Zn Metal Anodes. Advanced Materials, 2021, 33, e2007388.	21.0	359
6	Tuning the Kinetics of Zincâ€Ion Insertion/Extraction in V ₂ O ₅ by In Situ Polyaniline Intercalation Enables Improved Aqueous Zincâ€Ion Storage Performance. Advanced Materials, 2020, 32, e2001113.	21.0	357
7	Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior Highâ€Rate and Lowâ€Temperature Zincâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1907684.	14.9	259
8	One-Step Synthesis of Hierarchical SnO ₂ Hollow Nanostructures via Self-Assembly for High Power Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 8084-8088.	3.1	258
9	Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 5596.	10.3	250
10	Morphogenesis of Highly Uniform CoCO ₃ Submicrometer Crystals and Their Conversion to Mesoporous Co ₃ O ₄ for Gas-Sensing Applications. Chemistry of Materials, 2009, 21, 4984-4992.	6.7	194
11	A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta, 2008, 77, 455-459.	5.5	176
12	Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy, 2019, 60, 171-178.	16.0	149
13	Porous Carbon Nanofibers Derived from Conducting Polymer: Synthesis and Application in Lithium-Ion Batteries with High-Rate Capability. Journal of Physical Chemistry C, 2009, 113, 13438-13442.	3.1	139
14	Synthesis of Cobalt Ionâ€Based Coordination Polymer Nanowires and Their Conversion into Porous Co ₃ O ₄ Nanowires with Good Lithium Storage Properties. Chemistry - A European Journal, 2010, 16, 5215-5221.	3.3	131
15	Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy, 2014, 9, 61-70.	16.0	127
16	Highâ€Voltage Zincâ€lon Batteries: Design Strategies and Challenges. Advanced Functional Materials, 2021, 31, 2010213.	14.9	123
17	Construction of hierarchical CoS nanowire@NiCo ₂ S ₄ nanosheet arrays via one-step ion exchange for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 24033-24040.	10.3	119
18	Quasi-reversible conversion reaction of CoSe ₂ /nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 7088-7098.	10.3	117

#	Article	IF	CITATIONS
19	Oxyvanite V ₃ O ₅ : A new intercalationâ€type anode for lithiumâ€ion battery. InformaÄnÃ-Materiály, 2019, 1, 251-259.	17.3	117
20	Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. Journal of Power Sources, 2019, 441, 227192.	7.8	112
21	Redistributing Zn-ion flux by interlayer ion channels in Mg-Al layered double hydroxide-based artificial solid electrolyte interface for ultra-stable and dendrite-free Zn metal anodes. Energy Storage Materials, 2021, 41, 230-239.	18.0	109
22	Enhanced gas sensing properties of ZnO/SnO ₂ hierarchical architectures by glucose-induced attachment. CrystEngComm, 2011, 13, 1557-1563.	2.6	105
23	Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Materials, 2019, 20, 118-138.	18.0	104
24	Achieving Ultrahighâ€Rate and Highâ€Safety Li ⁺ Storage Based on Interconnected Tunnel Structure in Microâ€Size Niobium Tungsten Oxides. Advanced Materials, 2020, 32, e1905295.	21.0	95
25	Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 14801-14810.	10.3	89
26	Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods. Nanotechnology, 2008, 19, 035501.	2.6	86
27	Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries. Nanoscale, 2021, 13, 2399-2407.	5.6	86
28	SnO ₂ monolayer porous hollow spheres as a gas sensor. Nanotechnology, 2009, 20, 455503.	2.6	85
29	Nanostructured Li ₃ V ₂ (PO ₄) ₃ Cathodes. Small, 2018, 14, e1800567.	10.0	85
30	Mechanically Durable and Flexible Thermoelectric Films from PEDOT:PSS/PVA/Bi _{0.5} Sb _{1.5} Te ₃ Nanocomposites. Advanced Electronic Materials, 2017, 3, 1600554.	5.1	80
31	Vinyl Ethylene Carbonate as an Effective SEI-Forming Additive in Carbonate-Based Electrolyte for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 6118-6125.	8.0	80
32	A Lowâ€Temperature Sodiumâ€Ion Full Battery: Superb Kinetics and Cycling Stability. Advanced Functional Materials, 2021, 31, 2009458.	14.9	77
33	Mixedâ€Valence Copper Selenide as an Anode for Ultralong Lifespan Rockingâ€Chair Znâ€Ion Batteries: An Insight into its Intercalation/Extraction Kinetics and Charge Storage Mechanism. Advanced Functional Materials, 2021, 31, 2005092.	14.9	76
34	Enable commercial Zinc powders for dendrite-free Zinc anode with improved utilization rate by pristine graphene hybridization. Energy Storage Materials, 2022, 45, 465-473.	18.0	76
35	Topotactic Transformation Synthesis of 2D Ultrathin GeS ₂ Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries. ACS Nano, 2020, 14, 531-540.	14.6	71
36	Rational-design of polyaniline cathode using proton doping strategy by graphene oxide for enhanced aqueous zinc-ion batteries. Journal of Power Sources, 2020, 450, 227716.	7.8	71

#	Article	IF	CITATIONS
37	Transition metal phosphides: new generation cathode host/separator modifier for Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 7458-7480.	10.3	69
38	Carbon Coated SnS/SnO ₂ Heterostructures Wrapping on CNFs as an Improved-Performance Anode for Li-Ion Batteries: Lithiation-Induced Structural Optimization upon Cycling. ACS Applied Materials & Interfaces, 2016, 8, 30256-30263.	8.0	68
39	Synthesis of mesoporous SnO2 spheres via self-assembly and superior lithium storage properties. Electrochimica Acta, 2011, 56, 2358-2363.	5.2	66
40	A Facile Titanium Glycolate Precursor Route to Mesoporous Au/Li ₄ Ti ₅ O ₁₂ Spheres for High-Rate Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 1233-1238.	8.0	65
41	In Situ Carbon Insertion in Laminated Molybdenum Dioxide by Interlayer Engineering Toward Ultrastable "Rockingâ€Chair―Zincâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2102827.	14.9	64
42	Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn–Ion Hybrid Capacitors. Nano-Micro Letters, 2022, 14, 106.	27.0	63
43	Fast-response and high sensitivity gas sensors based on SnO2 hollow spheres. Thin Solid Films, 2008, 516, 7840-7843.	1.8	61
44	Topochemical synthesis of cobalt oxide nanowire arrays for high performance binderless lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 11867.	6.7	60
45	Highly Dispersive MoP Nanoparticles Anchored on Reduced Graphene Oxide Nanosheets for an Efficient Hydrogen Evolution Reaction Electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 26258-26263.	8.0	60
46	Interlayer Engineering of Molybdenum Trioxide toward High apacity and Stable Sodium Ion Half/Full Batteries. Advanced Functional Materials, 2020, 30, 2001708.	14.9	58
47	Spontaneous Strain Buffer Enables Superior Cycling Stability in Single-Crystal Nickel-Rich NCM Cathode. Nano Letters, 2021, 21, 9997-10005.	9.1	58
48	Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air batteries. Journal of Power Sources, 2020, 477, 228696.	7.8	56
49	Boosting sodium-ion storage performance of MoSe2@C electrospinning nanofibers by embedding graphene nanosheets. Journal of Alloys and Compounds, 2017, 727, 1280-1287.	5.5	56
50	Regulating the Electrolyte Solvation Structure Enables Ultralong Lifespan Vanadiumâ€Based Cathodes with Excellent Lowâ€Temperature Performance. Advanced Functional Materials, 2022, 32, .	14.9	56
51	Preparation of a Ruâ€Nanoparticles/Defectiveâ€Graphene Composite as a Highly Efficient Areneâ€Hydrogenation Catalyst. ChemCatChem, 2012, 4, 1938-1942.	3.7	55
52	Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling. Journal of Power Sources, 2017, 366, 1-8.	7.8	54
53	Fe ₂ O ₃ /SnSSe Hexagonal Nanoplates as Lithium-Ion Batteries Anode. ACS Applied Materials & Interfaces, 2018, 10, 12722-12730.	8.0	52
54	3Dâ€Printed Microelectrodes with a Developed Conductive Network and Hierarchical Pores toward High Areal Capacity for Microbatteries. Advanced Materials Technologies, 2019, 4, 1800402.	5.8	51

#	Article	IF	CITATIONS
55	Rational design of Auâ \in "NiO hierarchical structures with enhanced rate performance for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7023.	10.3	50
56	Topochemical Synthesis of Cobalt Oxideâ€Based Porous Nanostructures for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2011, 17, 1596-1604.	3.3	48
57	Nitrogen doped carbon nanotubes encapsulated MnO nanoparticles derived from metal coordination polymer towards high performance Lithium-ion Battery Anodes. Electrochimica Acta, 2016, 187, 406-412.	5.2	47
58	Facile synthesis of ZnWO ₄ nanowall arrays on Ni foam for high performance supercapacitors. RSC Advances, 2014, 4, 4212-4217.	3.6	46
59	Low-temperature sensing and high sensitivity of ZnO nanoneedles due to small size effect. Thin Solid Films, 2009, 517, 5931-5934.	1.8	44
60	Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines. Advanced Synthesis and Catalysis, 2014, 356, 475-484.	4.3	44
61	<i>In situ</i> construction of active interfaces towards improved high-rate performance of CoSe ₂ . Journal of Materials Chemistry A, 2021, 9, 14582-14592.	10.3	44
62	A 1D–3D interconnected Î́-MnO2 nanowires network as high-performance and high energy efficiency cathode material for aqueous zinc-ion batteries. Electrochimica Acta, 2021, 370, 137740.	5.2	43
63	Synthesis of highly aligned and ultralong coordination polymer nanowires and their calcination to porous manganese oxide nanostructures. Journal of Materials Chemistry, 2012, 22, 4982.	6.7	42
64	Tufted NiCo2O4 Nanoneedles Grown on Carbon Nanofibers with advanced electrochemical property for Lithium Ion Batteries. Electrochimica Acta, 2016, 222, 1878-1886.	5.2	42
65	Hollow LDH nanowires as excellent adsorbents for organic dye. Journal of Alloys and Compounds, 2016, 687, 499-505.	5.5	42
66	Layered zirconium phosphate-based artificial solid electrolyte interface with zinc ion channels towards dendrite-free Zn metal anodes. Chemical Engineering Journal, 2022, 432, 134227.	12.7	42
67	Simple fabrication of a sensitive hydrogen peroxide biosensor using enzymes immobilized in processable polyaniline nanofibers/chitosan film. Materials Science and Engineering C, 2009, 29, 1794-1797.	7.3	38
68	Amorphous Bimetallic Oxides Fe–V–O with Tunable Compositions toward Rechargeable Zn-Ion Batteries with Excellent Low-Temperature Performance. ACS Applied Materials & Interfaces, 2020, 12, 11753-11760.	8.0	38
69	Compressed hydrogen gas-induced synthesis of Au–Pt core–shell nanoparticle chains towards high-performance catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2014, 2, 10676-10681.	10.3	37
70	Ammonia gas detection based on polyaniline nanofibers coated on interdigitated array electrodes. Journal of Materials Science: Materials in Electronics, 2011, 22, 418-421.	2.2	35
71	Coordination Chemistry and Antisolvent Strategy to Rare-Earth Solid Solution Colloidal Spheres. Journal of the American Chemical Society, 2012, 134, 19084-19091.	13.7	35
72	Carbon intercalated porous NaTi ₂ (PO ₄) ₃ spheres as high-rate and ultralong-life anodes for rechargeable sodium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 1435-1440.	5.9	34

#	Article	IF	CITATIONS
73	Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microsphere microbiocomposites to hydrogen peroxide. Talanta, 2008, 77, 37-41.	5.5	33
74	Unblocking Oxygen Charge Compensation for Stabilized Highâ€Voltage Structure in P2â€Type Sodiumâ€Ion Cathode. Advanced Science, 2022, 9, e2200498.	11.2	32
75	Pristine graphene for advanced electrochemical energy applications. Journal of Power Sources, 2019, 437, 226899.	7.8	31
76	Dualâ€Redox Sites Guarantee Highâ€Capacity Sodium Storage in Twoâ€Dimension Conjugated Metal–Organic Frameworks. Advanced Functional Materials, 2022, 32, .	14.9	31
77	Intrinsic conductivity optimization of bi-metallic nickel cobalt selenides toward superior-rate Na-ion storage. Materials Chemistry Frontiers, 2017, 1, 2656-2663.	5.9	30
78	Design Strategies of Si/C Composite Anode for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2021, 27, 12237-12256.	3.3	29
79	Optimization of the Hydrogenâ€Adsorption Free Energy of Ruâ€Based Catalysts towards Highâ€Efficiency Hydrogen Evolution Reaction at all pH. Chemistry - A European Journal, 2019, 25, 8579-8584.	3.3	28
80	Interlayer Chemistry of Layered Electrode Materials in Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2007358.	14.9	28
81	Sulfated mesoporous Au/TiO2 spheres as a highly active and stable solid acid catalyst. Journal of Materials Chemistry, 2012, 22, 13216.	6.7	27
82	Synchronous Manipulation of Ion and Electron Transfer in Wadsley–Roth Phase Tiâ€Nb Oxides for Fastâ€Charging Lithiumâ€lon Batteries. Advanced Science, 2022, 9, e2104530.	11.2	26
83	Activating the Stepwise Intercalation–Conversion Reaction of Layered Copper Sulfide toward Extremely High Capacity Zinc-Metal-Free Anodes for Rocking-Chair Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1126-1137.	8.0	26
84	Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts. ChemCatChem, 2012, 4, 1675-1682.	3.7	25
85	Threeâ€Dimensional Graphene/Ag Aerogel for Durable and Stable Li Metal Anodes in Carbonateâ€Based Electrolytes. Chemistry - A European Journal, 2019, 25, 5036-5042.	3.3	25
86	Postâ€Lithiumâ€Ion Battery Era: Recent Advances in Rechargeable Potassiumâ€Ion Batteries. Chemistry - A European Journal, 2021, 27, 512-536.	3.3	25
87	Integration of Localized Electric-Field Redistribution and Interfacial Tin Nanocoating of Lithium Microparticles toward Long-Life Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 650-659.	8.0	24
88	Suppressing vanadium dissolution of V ₂ O ₅ <i>via in situ</i> polyethylene glycol intercalation towards ultralong lifetime room/low-temperature zinc-ion batteries. Nanoscale, 2021, 13, 17040-17048.	5.6	23
89	Double-Layer N,S-Codoped Carbon Protection of MnS Nanoparticles Enabling Ultralong-Life and High-Rate Lithium Ion Storage. ACS Applied Energy Materials, 2018, 1, 4867-4873.	5.1	22
90	Cation mixing in Wadsley-Roth phase anode of lithium-ion battery improves cycling stability and fast Li+ storage. Applied Physics Reviews, 2021, 8, .	11.3	21

#	Article	IF	CITATIONS
91	Phosphorusâ€Dopingâ€Induced Surface Vacancies of 3D Na ₂ Ti ₃ O ₇ Nanowire Arrays Enabling Highâ€Rate and Longâ€Life Sodium Storage. Chemistry - A European Journal, 2019, 25, 14881-14889.	3.3	19
92	High capacity and excellent cycling stability of branched cobalt oxide nanowires as Li-insertion materials. Applied Physics Letters, 2010, 97, 043501.	3.3	18
93	Facile preparation of carbon wrapped copper telluride nanowires as high performance anodes for sodium and lithium ion batteries. Nanotechnology, 2017, 28, 145403.	2.6	18
94	Seed-free, aqueous synthesis of gold nanowires. CrystEngComm, 2012, 14, 7549.	2.6	17
95	Ten Thousand-Cycle Ultrafast Energy Storage of Wadsley–Roth Phase Fe–Nb Oxides with a Desolvation Promoting Interfacial Layer. Nano Letters, 2021, 21, 9675-9683.	9.1	17
96	Monodisperse mesoporous Ta2O5 colloidal spheres as a highly effective photocatalyst for hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 17225-17232.	7.1	16
97	An optimal task management and control scheme for military operations with dynamic game strategy. Aerospace Science and Technology, 2021, 115, 106815.	4.8	16
98	Phase-transition engineering induced lattice contraction of the molybdenum carbide surface for highly efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 11414-11425.	10.3	16
99	Green synthesis of highly reduced graphene oxide by compressed hydrogen gas towards energy storage devices. Journal of Power Sources, 2015, 274, 310-317.	7.8	15
100	Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries. Nanoscale, 2012, 4, 5731.	5.6	14
101	Deep Insight into Electrochemical Kinetics of Cowpea‣ike Li ₃ VO ₄ @C Nanowires as Highâ€Rate Anode Materials for Lithium″on Batteries. ChemElectroChem, 2019, 6, 3920-3927.	3.4	14
102	Cobalt (hcp) nanofibers with pine-tree-leaf hierarchical superstructures. Journal of Materials Chemistry, 2010, 20, 9187.	6.7	13
103	Twoâ€Dimensional Germanium Sulfide Nanosheets as an Ultra‣table and High Capacity Anode for Lithium Ion Batteries. Chemistry - A European Journal, 2020, 26, 6554-6560.	3.3	13
104	Ultrahigh Rate and Ultralong Life Span Sodium Storage of FePS ₃ Enabled by the Space Confinement Effect of Layered Expanded Graphite. ACS Applied Materials & Interfaces, 2021, 13, 55254-55262.	8.0	11
105	Manipulating the Electronic Structure of Graphite Intercalation Compounds for Boosting the Bifunctional Oxygen Catalytic Performance. Small, 2022, 18, e2107667.	10.0	11
106	Achieving Stable Zinc-Ion Storage Performance of Manganese Oxides by Synergistic Engineering of the Interlayer Structure and Interface. ACS Applied Materials & Interfaces, 2022, 14, 10489-10497.	8.0	11
107	Porous Ru/RuO _x /LDH as highly active heterogeneous catalysts for the aerobic oxidation of alcohols. New Journal of Chemistry, 2016, 40, 8364-8370.	2.8	9
108	Precursorâ€Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts. Chemistry - A European Journal, 2018, 24, 10280-10290.	3.3	9

#	Article	IF	CITATIONS
109	Nb-based compounds for rapid lithium-ion storage and diffusion. Journal of Power Sources, 2021, 496, 229840.	7.8	9
110	Enhancing the coupling effect in a sandwiched FeNiPS ₃ /graphite catalyst derived from graphite intercalation compounds for efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 11793-11802.	10.3	8
111	Interfacial Protection Engineering of Sodium Nanoparticles toward Dendriteâ€Free and Longâ€Life Sodium Metal Battery. Small, 2021, 17, e2102400.	10.0	7
112	Componentâ€Customizable Porous Rareâ€Earthâ€Based Colloidal Spheres towards Highly Effective Catalysts and Bioimaging Applications. Chemistry - A European Journal, 2017, 23, 16242-16248.	3.3	6
113	An in situ constructed Li+-Conductive interphase enables high-capacity and high-rate SiOx/C anode. Journal of Power Sources, 2022, 542, 231795.	7.8	5
114	Fast Response Amperometric Biosensor for H ₂ O ₂ Detection Based on Horseradish-Peroxidase/Titania-Nanowires/Chitosan Modified Glassy Carbon Electrode. Sensor Letters, 2009, 7, 543-549.	0.4	4
115	Enhanced catalytic activity of monodispersed porous Al2O3 colloidal spheres with NiMo for simultaneous hydrodesulfurization and hydrogenation. RSC Advances, 2018, 8, 18059-18066.	3.6	4
116	In‣itu Activated NiFePBAâ€FeOOH Electrocatalyst for Oxygen Evolution Reaction and Zincâ€Air Battery. ChemistrySelect, 2021, 6, 3683-3691.	1.5	4
117	Lithium-Ion Batteries: Nanostructured Li3 V2 (PO4)3 Cathodes (Small 21/2018). Small, 2018, 14, 1870095.	10.0	3
118	General Synthetic Protocol for the Synthesis of Ruâ€X (X=Rh, Pd, Ag) Heterogeneous Ultrathin Nanowires with a Tunable Composition. ChemCatChem, 2017, 9, 347-353.	3.7	2
119	The Efficient K Ion Storage of M ₂ P ₂ O ₇ /C (M=Fe, Co, Ni) Anode Derived from Organicâ€Inorganic Phosphate Precursors. Chemistry - A European Journal, 2021, 27, 9031-9037.	3.3	2
120	Tuning the layer structure of molybdenum trioxide towards high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2023, 34, 107410.	9.0	2
121	Uniform Li Plating/Stripping within Ni Macropore Arrays Enabled by Regulated Electric Field Distribution for Ultra-Stable Li-Metal Anodes. IScience, 2020, 23, 101089.	4.1	1
122	NASICON Electrodes: A Lowâ€Temperature Sodiumâ€lon Full Battery: Superb Kinetics and Cycling Stability (Adv. Funct. Mater. 11/2021). Advanced Functional Materials, 2021, 31, 2170070.	14.9	1
123	Frontispiece: Precursor-Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts. Chemistry - A European Journal, 2018, 24, .	3.3	0
124	Frontispiece: Postâ€Lithiumâ€Ion Battery Era: Recent Advances in Rechargeable Potassiumâ€Ion Batteries. Chemistry - A European Journal, 2021, 27, .	3.3	0
125	Frontispiece: Design Strategies of Si/C Composite Anode for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2021, 27, .	3.3	0