Adam Burbidge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8346622/publications.pdf

Version: 2024-02-01

44 papers 2,193 citations

331670 21 h-index 289244 40 g-index

46 all docs

46 docs citations

46 times ranked

2453 citing authors

#	Article	IF	Citations
1	Understanding foods as soft materials. Nature Materials, 2005, 4, 729-740.	27. 5	597
2	Squeeze flow theory and applications to rheometry: A review. Journal of Non-Newtonian Fluid Mechanics, 2005, 132, 1-27.	2.4	348
3	On the modelling of the packing of fine particles. Powder Technology, 1997, 92, 185-194.	4.2	215
4	Food structure and functionality: a soft matter perspective. Soft Matter, 2008, 4, 1569.	2.7	180
5	Visco-plastic models of isothermal lava domes. Journal of Fluid Mechanics, 2000, 403, 37-65.	3.4	100
6	Particle and droplet size analysis from chord distributions. Powder Technology, 1999, 102, 75-83.	4.2	54
7	Effect of Carbohydrate on the Rheological Parameters of Paste Extrusion. Journal of the American Ceramic Society, 1997, 80, 1841-1850.	3.8	51
8	Solution calorimetry: A novel perspective into the dissolution process of food powders. Food Research International, 2007, 40, 1286-1298.	6.2	49
9	Assessing dissolution kinetics of powders by a single particle approach. Chemical Engineering Journal, 2008, 139, 118-127.	12.7	44
10	Quantifying the consistency and rheology of liquid foods using fractional calculus. Food Hydrocolloids, 2017, 69, 242-254.	10.7	40
11	Avalanches of coalescence events and local extensional flows – Stabilisation or destabilisation due to surfactant. Journal of Colloid and Interface Science, 2010, 343, 79-86.	9.4	37
12	Particle and droplet size analysis from chord measurements using Bayes' theorem. Powder Technology, 2001, 116, 33-42.	4.2	34
13	Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions. Journal of Colloid and Interface Science, 2013, 389, 147-156.	9.4	33
14	In vivo observations and in vitro experiments on the oral phase of swallowing of Newtonian and shear-thinning liquids. Journal of Biomechanics, 2016, 49, 3788-3795.	2.1	32
15	Residence time distributions in a modular micro reaction system. Journal of Food Engineering, 2013, 116, 910-919.	5.2	29
16	A review of the approaches to predict the ease of swallowing and post-swallow residues. Trends in Food Science and Technology, 2019, 86, 281-297.	15.1	29
17	Liquid maldistribution in particulate paste extrusion. Powder Technology, 1999, 103, 103-109.	4.2	27
18	Fluid mechanics of eating, swallowing and digestion – overview and perspectives. Food and Function, 2013, 4, 443-447.	4.6	27

#	Article	lF	Citations
19	The single screw extrusion of pastes. Chemical Engineering Science, 1995, 50, 2531-2543.	3.8	26
20	A model experiment to understand the oral phase of swallowing of Newtonian liquids. Journal of Biomechanics, 2015, 48, 3922-3928.	2.1	26
21	An approximate solution to flow through a contraction for high Trouton ratio fluids. Journal of Non-Newtonian Fluid Mechanics, 2007, 144, 87-97.	2.4	21
22	Effect of fat content on the dissolution enthalpy and kinetics of a model food powder. Journal of Food Engineering, 2008, 85, 518-527.	5.2	21
23	Squeeze flows of apparently lubricated thin films. Journal of Non-Newtonian Fluid Mechanics, 2004, 124, 115-127.	2.4	19
24	Investigating the dynamics of segregation of high jetsam binary batch fluidised bed systems. Chemical Engineering and Processing: Process Intensification, 2004, 43, 187-192.	3.6	17
25	Geometrical resolution limits and detection mechanisms in the oral cavity. Journal of Biomechanics, 2007, 40, 3533-3540.	2.1	16
26	Non-equilibrium particle motion in the vicinity of a single blade. Powder Technology, 2003, 132, 1-9.	4.2	15
27	Identification of tactile mechanisms for the evaluation of object sizes during texture perception. Food Quality and Preference, 2009, 20, 329-334.	4.6	15
28	Nutrition in the digital age - How digital tools can help to solve the personalized nutrition conundrum. Trends in Food Science and Technology, 2019, 90, 194-200.	15.1	15
29	A model to predict the pressure development in single screw extrusion. Journal of Materials Processing Technology, 2003, 135, 284-290.	6.3	14
30	A Preliminary Evaluation of Single Screw Paste Extrusion. Chemical Engineering Research and Design, 2000, 78, 790-794.	5.6	13
31	An in vitro experiment to simulate how easy tablets are to swallow. International Journal of Pharmaceutics, 2018, 535, 27-37.	5.2	12
32	High frequency parallel plate probe for the measurement of the complex viscosity of liquids. Rheologica Acta, 2003, 42, 462-476.	2.4	9
33	Rheological behavior of low-viscous emulsions and interpretation with a theoretical model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 223, 113-133.	4.7	5
34	Stray-field NMR diffusion q -space diffraction imaging of monodisperse coarsening foams. Journal of Colloid and Interface Science, 2016, 476, 20-28.	9.4	4
35	Unsteady state planar divergent flow of extrusion pastes. Powder Technology, 1999, 106, 119-131.	4.2	3
36	Examining predictive correlations for equilibrium concentration profiles in jetsam-rich systems. Advanced Powder Technology, 2004, 15, 311-320.	4.1	3

#	Article	IF	CITATIONS
37	Frequency-Amplitude Cross Interaction during Pulsatile Taste Delivery Using Gustometers. Frontiers in Neuroscience, 2016, 10, 562.	2.8	3
38	Transient peristaltic transport of grains in a liquid. EPJ Web of Conferences, 2017, 140, 09009.	0.3	2
39	Food Industry R&D. , 2016, , .		2
40	Approximate flow analysis of paste forming process for simplified ceramic dome. Advances in Applied Ceramics, 2001, 100, 100-105.	0.4	1
41	A model experiment to study swallowing of spherical and elongated particles. EPJ Web of Conferences, 2017, 140, 09018.	0.3	1
42	Twenty-two. Baked Alaska and Frozen Florida. On the Physics of Heat Transfer., 2012,,.		1
43	Boundary integral methods for microfluidic problems. , 2015, , .		0
44	Baked Alaska and Frozen Florida. , 2013, , 166-175.		0