Stephen Arumainathan

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/8346620/stephen-arumainathan-publications-by-citations.pdf$

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

162 papers

7,583 citations

35 h-index

85 g-index

178 ext. papers

8,252 ext. citations

3.3 avg, IF

6.22 L-index

#	Paper	IF	Citations
162	Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. <i>Materials Science and Engineering C</i> , 2013 , 33, 91-8	8.3	808
161	ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. <i>Journal of Colloid and Interface Science</i> , 2015 , 452, 126-133	9.3	516
160	ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. <i>Materials Science and Engineering C</i> , 2013 , 33, 2235-44	8.3	481
159	Ce(3+)-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. <i>Scientific Reports</i> , 2016 , 6, 31641	4.9	435
158	Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. <i>Materials Science and Engineering C</i> , 2013 , 33, 4725-31	8.3	422
157	The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. <i>Journal of Molecular Liquids</i> , 2013 , 177, 394-401	6	413
156	ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. <i>RSC Advances</i> , 2015 , 5, 34645-34651	3.7	393
155	Visible light degradation of textile effluent using novel catalyst ZnO/EMn2O3. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2014 , 45, 1910-1917	5.3	308
154	Comparative study on photocatalytic activity of ZnO prepared by different methods. <i>Journal of Molecular Liquids</i> , 2013 , 181, 133-141	6	291
153	Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. <i>Journal of Molecular Liquids</i> , 2013 , 178, 88-93	6	283
152	ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. <i>Materials Chemistry and Physics</i> , 2011 , 125, 277-280	4.4	204
151	ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. <i>Journal of Molecular Liquids</i> , 2015 , 209, 374-380	6	142
150	Synthesis and characterization of chitosantilver nanocomposite. <i>Applied Nanoscience (Switzerland)</i> , 2012 , 2, 299-303	3.3	122
149	Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni P deposits. <i>Materials Chemistry and Physics</i> , 2006 , 99, 117-126	4.4	119
148	Pulsed electrodeposition of nanocrystalline Cu N i alloy films and evaluation of their characteristic properties. <i>Materials Letters</i> , 2006 , 60, 1990-1995	3.3	99
147	Visible light induced degradation of methyl orange using EAg0.333V2O5 nanorod catalysts by facile thermal decomposition method. <i>Journal of Saudi Chemical Society</i> , 2015 , 19, 521-527	4.3	97
146	Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. <i>European Journal of Medicinal Chemistry</i> , 2014 , 76, 256-63	6.8	95

(2012-2006)

145	Formation of electroless Ni B coatings using low temperature bath and evaluation of their characteristic properties. <i>Surface and Coatings Technology</i> , 2006 , 200, 6888-6894	4.4	95
144	Electroless Nitto P ternary alloy deposits: preparation and characteristics. <i>Surface and Coatings Technology</i> , 2003 , 172, 298-307	4.4	91
143	Fabrication of NiHe2O3 magnetic nanorods and application to the detection of uric acid. <i>RSC Advances</i> , 2014 , 4, 17146	3.7	80
142	Tailoring the electrical and dielectric properties of ZnO nanorods by substitution. <i>Journal of Molecular Liquids</i> , 2014 , 193, 160-165	6	73
141	Doping of Co into V2O5 nanoparticles enhances photodegradation of methylene blue. <i>Journal of Alloys and Compounds</i> , 2014 , 598, 151-160	5.7	66
140	Preparation and characterization of cross-linked chitosan/palladium nanocomposites for catalytic and antibacterial activity. <i>Journal of Molecular Liquids</i> , 2018 , 257, 32-41	6	65
139	An in vitro cytotoxicity study of 5-fluorouracil encapsulated chitosan/gold nanocomposites towards MCF-7 cells. <i>RSC Advances</i> , 2015 , 5, 1024-1032	3.7	63
138	Basic Principles, Mechanism, and Challenges of Photocatalysis. <i>Springer Series on Polymer and Composite Materials</i> , 2017 , 19-40	0.9	62
137	New electrochemical sensor based on Ni-doped V2O5 nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level. <i>Sensors and Actuators B: Chemical</i> , 2014 , 202, 440-447	8.5	60
136	Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application. <i>Materials Characterization</i> , 2012 , 67, 10-16	3.9	59
135	Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 499-506	4.7	59
134	EMoO3/polyaniline composite for effective scavenging of Rhodamine B, Congo red and textile dye effluent. <i>RSC Advances</i> , 2016 , 6, 28871-28886	3.7	54
133	Electroless NitoB ternary alloy deposits: preparation and characteristics. <i>Surface and Coatings Technology</i> , 2004 , 179, 56-62	4.4	50
132	Facile synthesis of cobalt doped hematite nanospheres: Magnetic and their electrochemical sensing properties. <i>Materials Chemistry and Physics</i> , 2012 , 134, 590-596	4.4	49
131	Highly active graphene-supported palladium-nickel alloy nanoparticles for catalytic reduction of 4-nitrophenol. <i>Applied Surface Science</i> , 2018 , 449, 764-771	6.7	47
130	Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2014 , 129, 484-90	4.4	39
129	5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines. <i>Polymer Bulletin</i> , 2020 , 77, 213-233	2.4	39
128	Synthesis, structure stability and magnetic properties of nanocrystalline AgNi alloy. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	36

127	In vitro cytotoxicity study of dual drug loaded chitosan/palladium nanocomposite towards HT-29 cancer cells. <i>Materials Science and Engineering C</i> , 2017 , 75, 1399-1410	8.3	34	
126	Preparation and characterization of polyindoleInO composite polymer electrolyte with LiClO4. <i>Ionics</i> , 2010 , 16, 839-848	2.7	33	
125	Investigations on the performance of poly(o-anisidine)/graphene nanocomposites for the electrochemical detection of NADH. <i>Materials Science and Engineering C</i> , 2015 , 55, 579-91	8.3	32	
124	Effect of phosphorus on magnetic property of Ni P alloy synthesized using pulsed electrodeposition. <i>Materials Chemistry and Physics</i> , 2015 , 166, 153-159	4.4	32	
123	A comparative study of 5-Fluorouracil release from chitosan/silver and chitosan/silver/MWCNT nanocomposites and their cytotoxicity towards MCF-7. <i>Materials Science and Engineering C</i> , 2016 , 66, 244-250	8.3	32	
122	Synthesis and spectral characterization of silver embedded chitosan matrix nanocomposite for the selective colorimetric sensing of toxic mercury. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2015 , 143, 242-50	4.4	31	
121	Preparation and Characterization of Polyindolelron Oxide Composite Polymer Electrolyte Containing LiClO4. <i>Polymer-Plastics Technology and Engineering</i> , 2012 , 51, 225-230		31	
120	Fabrication of neurotransmitter dopamine electrochemical sensor based on poly(o-anisidine)/CNTs nanocomposite. <i>Surfaces and Interfaces</i> , 2016 , 4, 27-34	4.1	30	
119	Synthesis of Co 2+ -doped Fe 2 O 3 photocatalyst for degradation of pararosaniline dye. <i>Solid State Sciences</i> , 2017 , 68, 39-46	3.4	29	
118	Manganese sesquioxide to trimanganese tetroxide hierarchical hollow nanostructures: effect of gadolinium on structural, thermal, optical and magnetic properties. <i>CrystEngComm</i> , 2015 , 17, 2886-289	5 ^{3.3}	28	
117	Polyindole¶uO composite polymer electrolyte containing LiClO4 for lithium ion polymer batteries. <i>Polymer Bulletin</i> , 2012 , 68, 181-196	2.4	28	
116	Synthesis and Characterization of PolyindoleNiO-Based Composite Polymer Electrolyte with LiClO4. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2011 , 60, 877-892	3	28	
115	Photocatalytic properties of amine functionalized Bi2Sn2O7/rGO nanocomposites. <i>Journal of Physics and Chemistry of Solids</i> , 2018 , 118, 21-31	3.9	26	
114	Pulsed electrodeposited dendritic Pd-Ni alloy as a magnetically recoverable nanocatalyst for the hydrogenation of 4-nitrophenol. <i>Journal of Alloys and Compounds</i> , 2018 , 735, 1703-1711	5.7	26	
113	Synthesis and characterization of Keggin-type polyoxometalate/zirconia nanocomposites©omparison of its photocatalytic activity towards various organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 26-40	4.7	26	
112	Acetone sensing behaviour of optical fiber clad-modified with ECuBr nanocrystals. <i>Materials Science in Semiconductor Processing</i> , 2018 , 88, 181-185	4.3	22	
111	Photocatalytic Degradation of Organic Dyes Using ZnO/CeO2 Nanocomposite Material under Visible Light. <i>Advanced Materials Research</i> , 2012 , 584, 381-385	0.5	22	
110	Fabrication of Fe2O3 Nanoparticles for the Electrochemical Detection of Uric Acid. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 2012 , 42, 303-307		20	

(2020-2017)

Visible light degradation of textile effluent by electrodeposited multiphase CuInSe2 semiconductor photocatalysts. <i>Journal of Molecular Liquids</i> , 2017 , 227, 194-201	6	19	
A voltammetric biosensor based on poly(o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid. <i>Materials Science and Engineering C</i> , 2018 , 91, 512-523	8.3	19	
Fabrication of iron oxide nanoparticles: magnetic and electrochemical sensing property. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 1256-1263	2.1	18	
Chitosan stabilized Ag-Au nanoalloy for colorimetric sensing and 5-Fluorouracil delivery. <i>International Journal of Biological Macromolecules</i> , 2017 , 95, 862-872	7.9	18	
Synthesis, characterization and photocatalytic activity of nanotitania loaded W-MCM-41. <i>Nanotechnology</i> , 2008 , 19, 315711	3.4	18	
Cadmium oxide nanoplatelets: synthesis, characterization and their electrochemical sensing property of catechol. <i>Journal of the Iranian Chemical Society</i> , 2013 , 10, 771-776	2	17	
Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate. <i>Materials Research Bulletin</i> , 2013 , 48, 4210-4215	5.1	17	
Structural and magnetic investigations on metastable AgBe nanophase alloy. <i>Journal of Alloys and Compounds</i> , 2013 , 557, 172-178	5.7	17	
PHOTOCATALYTIC DEGRADATION OF ORGANIC DYE USING NANO ZnO. <i>International Journal of Nanoscience</i> , 2011 , 10, 253-257	0.6	17	
Facile solvothermal decomposition synthesis of single phase ZnBi38O60 nanobundles for sensitive detection of 4-nitrophenol. <i>New Journal of Chemistry</i> , 2017 , 41, 7020-7027	3.6	16	
Fe2O3 nanoflowers: synthesis, characterization, electrochemical sensing and photocatalytic property. <i>Journal of the Iranian Chemical Society</i> , 2014 , 11, 645-652	2	16	
Microstructure analysis of the ferromagnetic AgNi system synthesized by pulsed electrodeposition. <i>Applied Surface Science</i> , 2012 , 258, 3126-3132	6.7	16	
Corrosion resistance of electroless Nilbw B coatings. <i>Transactions of the Institute of Metal Finishing</i> , 2009 , 87, 221-224	1.3	16	
Induced ordering in electrodeposited nanocrystalline NiMn alloys. <i>Journal of Applied Physics</i> , 2008 , 103, 053511	2.5	16	
Studies on the growth and characterization of l-argininium formate single crystals. <i>Journal of Crystal Growth</i> , 2004 , 267, 619-623	1.6	16	
Fabrication of chitosan/MWCNT nanocomposite as a carrier for 5-fluorouracil and a study of the cytotoxicity of 5-fluorouracil encapsulated nanocomposite towards MCF-7. <i>Polymer Bulletin</i> , 2016 , 73, 3221-3236	2.4	16	
Dendritic AgHe nanocrystalline alloy synthesized by pulsed electrodeposition and its characterization. <i>Applied Surface Science</i> , 2014 , 316, 491-496	6.7	15	
Luminescent chitosan/carbon dots as an effective nano-drug carrier for neurodegenerative diseases <i>RSC Advances</i> , 2020 , 10, 24386-24396	3.7	14	
	semiconductor photocatalysts. <i>Journal of Molecular Liquids</i> , 2017, 227, 194-201 A voltammetric biosensor based on poly(o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid. <i>Materials Science and Engineering C</i> , 2018, 91, 512-523 Fabrication of iron oxide nanoparticles: magnetic and electrochemical sensing property. <i>Journal of Materials Science: Materials in Electronics</i> , 2013, 24, 1256-1263 Chitosan stabilized Ag-Au nanoalloy for colorimetric sensing and 5-Fluorouracil delivery. <i>International Journal of Biological Macromolecules</i> , 2017, 95, 862-872 Synthesis, characterization and photocatalytic activity of nanotitania loaded W-MCM-41. <i>Nanotechnology</i> , 2008, 19, 315711 Cadmium oxide nanoplatelets: synthesis, characterization and their electrochemical sensing property of catechol. <i>Journal of the Iranian Chemical Society</i> , 2013, 10, 771-776 Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate. <i>Materials Research Bulletin</i> , 2013, 48, 4210-4215 Structural and magnetic investigations on metastable Aglie nanophase alloy. <i>Journal of Alloys and Compounds</i> , 2013, 557, 172-178 PHOTOCATALYTIC DEGRADATION OF ORGANIC DYE USING NANO ZnO. <i>International Journal of Nanoscience</i> , 2011, 10, 253-257 Facile solvothermal decomposition synthesis of single phase ZnBi38O60 nanobundles for sensitive detection of 4-nitrophenol. <i>New Journal of Chemistry</i> , 2017, 41, 7020-7027 BFe2O3 nanoflowers: synthesis, characterization, electrochemical sensing and photocatalytic property. <i>Journal of the Iranian Chemical Society</i> , 2014, 11, 645-652 Microstructure analysis of the ferromagnetic Aglis system synthesized by pulsed electrodeposition. <i>Applied Surface Science</i> , 2012, 258, 3126-3132 Corrosion resistance of electroless Nifbw B coatings. <i>Transactions of the Institute of Metal Finishing</i> , 2009, 87, 221-224 Induced ordering in electrodeposited nanocrystalline Nifhn alloys. <i>J</i>	Avoltammetric biosensor based on poly(o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid. <i>Materials Science and Engineering C</i> , 2018, 91, 512-523 Fabrication of iron oxide nanoparticles: magnetic and electrochemical sensing property. <i>Journal of Materials Science: Materials in Electronics</i> , 2013, 24, 1256-1263 Chitosan stabilized Ag-Au nanoalloy for colorimetric sensing and 5-Fluorouracil delivery. <i>International Journal of Biological Macromolecules</i> , 2017, 95, 862-872 Synthesis, characterization and photocatalytic activity of nanotitania loaded W-MCM-41. <i>Nanotechnology</i> , 2008, 19, 315711 Cadmium oxide nanoplatelets: synthesis, characterization and their electrochemical sensing property of catechol. <i>Journal of the Iranian Chemical Society</i> , 2013, 10, 771-776 Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate. <i>Materials Research Bulletin</i> , 2013, 48, 4210-4215 Structural and magnetic investigations on metastable AgBe nanophase alloy. <i>Journal of Alloys and Compounds</i> , 2013, 557, 172-178 PHOTOCATALYTIC DEGRADATION OF ORGANIC DYE USING NANO ZnO. <i>International Journal of Nanoscience</i> , 2011, 10, 253-257 Facile solvothermal decomposition synthesis of single phase ZnBi38060 nanobundles for sensitive detection of 4-nitrophenol. <i>New Journal of Chemistry</i> , 2017, 41, 7020-7027 Fe203 nanoflowers: synthesis, characterization, electrochemical sensing and photocatalytic property. <i>Journal of the Iranian Chemical Society</i> , 2014, 11, 643-652 Microstructure analysis of the ferromagnetic AgBii system synthesized by pulsed electrodeposition. <i>Applied Surface Science</i> , 2012, 258, 3126-3132 Corrosion resistance of electroless Nilbw B coatings. <i>Transactions of the Institute of Metal Finishing</i> , 2009, 87, 221-224 Induced ordering in electrodeposited nanocrystalline Nilbin alloys. <i>Journal of Applied Physics</i> , 2008, 13, 303511 Studies on the growth and characteriza	semiconductor photocatalysts. Journal of Molecular Liquids, 2017, 227, 194-201 A voltammetric biosensor based on poly(o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid. Materials Science and Engineering C, 2018, 91, 512-523 Fabrication of iron oxide nanoparticles: magnetic and electrochemical sensing property. Journal of Materials Science: Materials in Electronics, 2013, 24, 1256-1263 Chitosan stabilized Ag-Au nanoalloy for colorimetric sensing and 5-Fluorouracil delivery. International Journal of Biological Macromolecules, 2017, 95, 862-872 Synthesis, characterization and photocatalytic activity of nanotitania loaded W-MCM-41. Ananotechnology, 2008, 19, 315711 Cadmium oxide nanoplatelets: synthesis, characterization and their electrochemical sensing property of catechol. Journal of the Ironaina Chemical Society, 2013, 10, 771-776 Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate. Materials Research Bulletin, 2013, 48, 4210-4215 Structural and magnetic investigations on metastable Agile nanophase alloy. Journal of Alloys and Compounds, 2013, 557, 172-178 PHOTOCATALYTIC DEGRADATION OF ORGANIC DYE USING NANO ZnO. International Journal of Nanoscience, 2011, 10, 253-257 Facile solvothermal decomposition synthesis of single phase ZnBi38060 nanobundles for sensitive detection of 4-nitrophenol. New Journal of Chemistry, 2017, 41, 7020-7027 Fac203 nanoflowers: synthesis, characterization, electrochemical sensing and photocatalytic property. Journal of the Iranian Chemical Society, 2014, 11, 645-652 Microstructure analysis of the Ferromagnetic AgNi system synthesized by pulsed electrodeposition. Applied Surface Science, 2012, 258, 3126-3132 Corrosion resistance of electroless Nilbw B coatings. Transactions of the Institute of Metal Finishing 2009, 87, 221-224 Induced ordering in electrodeposited nanocrystalline Nilfin alloys. Journal of Applied Physics

91	Aqueous based synthesis of Cu5Se4 nanosheets and characterization. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 1888-1894	2.1	14
90	Recent advances in polymer supporting layered double hydroxides nanocomposite for electrochemical biosensors. <i>Materials Research Express</i> , 2018 , 5, 014011	1.7	13
89	Synthesis and characterization of GaN/PEDOT P PY nanocomposites and its photocatalytic activity and electrochemical detection of mebendazole. <i>Arabian Journal of Chemistry</i> , 2019 , 12, 3565-3575	5.9	13
88	Highly efficient catalytic reduction and electrochemical sensing of hazardous 4-nitrophenol using chitosan/rGO/palladium nanocomposite. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 14093-14104	2.1	13
87	Magnetic anisotropy studies on pulsed electrodeposited Ni/Ag/Ni trilayer. <i>Applied Surface Science</i> , 2014 , 313, 698-703	6.7	12
86	Fe2O3@polyaniline nanocomposite: Characterization and unusual sensing property. <i>Materials Letters</i> , 2014 , 128, 369-372	3.3	12
85	Magnetization behaviour of electrodeposited NiMn alloys. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1998 , 55, 184-186	3.1	12
84	Homo and hetero epitaxy of Germanium using isobutylgermane. <i>Thin Solid Films</i> , 2008 , 517, 404-406	2.2	12
83	Magnetic properties of electrodeposited nickelthanganese alloys: Effect of Ni/Mn bath ratio. Journal of Applied Electrochemistry, 2000 , 30, 1313-1316	2.6	12
82	Camphor sulphonic acid doped novel polycarbazole-g-C3N4 as an efficient electrode material for supercapacitor. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 8736-8750	2.1	11
81	Enhanced photocatalytic activity of Fe3O4/SnO2 magnetic nanocomposite for the degradation of organic dye. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 9663-9677	2.1	11
80	Corrosion behaviour of electrodeposited Ni-Mn alloys - electrochemical impedance measurements. <i>Anti-Corrosion Methods and Materials</i> , 1999 , 46, 117-121	0.8	11
79	Poly(anthranilic acid) Microspheres: Synthesis, Characterization and their Electrocatalytic Properties. <i>Bulletin of the Korean Chemical Society</i> , 2012 , 33, 1919-1924	1.2	11
78	A strategy to promote the electroactive platform adopting poly(o-anisidine)-silver nanocomposites probed for the voltammetric detection of NADH and dopamine. <i>Materials Science and Engineering C</i> , 2017 , 80, 425-437	8.3	10
77	Investigation of background radiation level in Krusadai Island Mangrove, Gulf of Mannar, India. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2015 , 304, 735-744	1.5	10
76	Visible light photocatalytic property of Zn doped V2O5 nanoparticles 2012 ,		10
75	Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and curcumin towards HT-29 colon cancer cells. <i>Polymer Bulletin</i> , 2020 , 77, 5681-5696	2.4	10
74	Comparative study of hydrogen evolution behavior of Nickel Cobalt and Nickel Cobalt Magnesium alloy film prepared by pulsed electrodeposition. <i>Vacuum</i> , 2019 , 160, 461-466	3.7	10

73	Effective dual role catalyst of mixed oxide heterostructure for photocatalyst and electrocatalytic sensing of isoniazid. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 12726-12740	2.1	9
72	Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 433, 202-208	2.8	9
71	Preparation and performance of Fe3O4/TiO2 nanocomposite with enhanced photo-Fenton activity for photocatalysis by facile hydrothermal method. <i>Applied Physics A: Materials Science and Processing</i> , 2019 , 125, 1	2.6	9
70	Investigating the photocatalytic degradation property of Pt, Pd and Ni nanoparticles-loaded TiO nanotubes powder prepared via rapid breakdown anodization. <i>Environmental Technology (United Kingdom)</i> , 2018 , 39, 2994-3005	2.6	9
69	Synthesis and Characterization of Nano-Titania Photocatalyst Loaded on Mo-MCM-41 Support. <i>Advanced Science Letters</i> , 2011 , 4, 89-95	0.1	9
68	Pdto alloy as an efficient recyclable catalyst for the reduction of hazardous 4-nitrophenol. <i>Research on Chemical Intermediates</i> , 2019 , 45, 815-832	2.8	9
67	Dopamine-conjugated CuS/chitosan nanocomposite for targeted photothermal drug delivery: In vitro cytotoxicity study to establish bio-compatibility. <i>Journal of Drug Delivery Science and Technology</i> , 2021 , 61, 102193	4.5	8
66	Solid state synthesis of copper tungstate nanoparticles and its electrochemical detection of 4-chlorophenol 2014 ,		7
65	Electrochemical sensing property of Mn doped Fe3O4 nanoparticles 2013,		7
64	Pulsed 70 kV X-ray sensing behavior of Cu2HgI4 thick films. <i>Materials Science in Semiconductor Processing</i> , 2019 , 91, 201-205	4.3	7
63	Phosphorus role on the enhancement in catalytic activity of magnetic Ni-P alloy. <i>Surfaces and Interfaces</i> , 2017 , 7, 58-68	4.1	6
62	Study on particle and cluster decay of superheavy nuclei $Z = 1301144$ using Cubic plus Proximity potential with improved transfer matrix method. <i>International Journal of Modern Physics E</i> , 2019 , 28, 1950051	0.7	6
61	Influence of Sn on the magnetic ordering of NiBn alloy synthesized using chemical reduction method. <i>Journal of Magnetism and Magnetic Materials</i> , 2016 , 406, 103-109	2.8	6
60	Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles 2014,		6
59	Hydrogen discharge on electrodeposited NiMnEe coatings in 30 w/o koh. <i>International Journal of Hydrogen Energy</i> , 1999 , 24, 1059-1066	6.7	6
58	Cross-linked chitosan/hydroxylated boron nitride nanocomposites for co-delivery of curcumin and 5-fluorouracil towards human colon cancer cells. <i>Journal of the Iranian Chemical Society</i> , 2021 , 18, 317-	329	6
57	Investigation of natural background radiation of sediments in Rameswaram Island, Tamil Nadu, India. <i>Arabian Journal of Geosciences</i> , 2018 , 11, 1	1.8	6
56	Visible light driven photocatalytic degradation of methylene blue using novel camphor sulfonic acid doped polycarbazole/g-C3N4 nanocomposite 2018 ,		5

55	Tunable poly(o-anisidine)/carbon nanotubes nanocomposites as an electrochemical sensor for the detection of an anthelmintic drug mebendazole. <i>Polymer Bulletin</i> , 2018 , 75, 3127-3147	2.4	5
54	Hydrothermal Synthesis of Lead Sulphide Nanoparticles and their Electrochemical Sensing Property. <i>Advanced Materials Research</i> , 2012 , 584, 276-279	0.5	5
53	Facile synthesis of 1D/1D ZnO@h-MoO3 for enhanced visible light driven photo degradation of industrial textile effluent. <i>Materials Letters</i> , 2020 , 262, 127049	3.3	5
52	Influence of geochemical variation and heavy mineral component on primordial radionuclide presence in Tamiraparani River sediments. <i>Environmental Earth Sciences</i> , 2017 , 76, 1	2.9	4
51	The variability in Oxford hip and knee scores in the preoperative period: is there an ideal time to score?. <i>Annals of the Royal College of Surgeons of England</i> , 2018 , 100, 16-20	1.4	4
50	Photocatalytic and biological properties of porous titanium aminophosphate. <i>Applied Nanoscience</i> (Switzerland), 2018 , 8, 1791-1807	3.3	4
49	Electrochemical sensing behaviour of Ni doped Fe3O4 nanoparticles 2014,		4
48	Synthesis, Characterization and Electrochemical Sensing Property of Fe-Fe2O3 Nanocomposite. <i>Advanced Materials Research</i> , 2012 , 584, 263-266	0.5	4
47	Hydrothermal Synthesis and Characterization of Cobalt Doped Fe2O3 2010 ,		4
46	Effect of Iron Oxide on Ionic Conductivity of Polyindole Based Composite Polymer Electrolytes. <i>Advanced Materials Research</i> , 2012 , 584, 536-540	0.5	4
45	Mosaic GaAs crystals for hard x-ray astronomy 2008 ,		4
44	Microstructure of Electrodeposited Ni-Mn Coatings. <i>Transactions of the Institute of Metal Finishing</i> , 1998 , 76, 111-113	1.3	4
43	2D ACPAR Facility at University of Madras. <i>Materials Science Forum</i> , 1994 , 175-178, 975-979	0.4	4
42	Synthesis of chitosan supported palladium nanoparticles and its catalytic activity towards 2-nitrophenol reduction 2016 ,		4
41	Synthesis of Ni0.2Fe1.8O3/polyaniline magnetic nanocomposite with excellent photocatalytic activity. <i>Materials Letters</i> , 2017 , 208, 27-30	3.3	3
40	Cytotoxicity and Antimicrobial Studies of Silver Nanoparticles Synthesized Using Psidium guajava L. Extract. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 2015 , 45, 426-43	2	3
39	Seasonal observation on radionuclide concentration in Krusadai Island Mangroves, Gulf of Mannar, India. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2016 , 310, 1277-1288	1.5	3
38	Double dumbbell shaped AgNi alloy by pulsed electrodeposition 2014 ,		3

(2017-2017)

37	Biological Evolution of New Intercalated Layered Double Hydroxides: Anticancer, Antibacterial and Photocatalytic Studies. <i>ChemistrySelect</i> , 2017 , 2, 11717-11726	1.8	3
36	Molybdenum oxide nanocubes: Synthesis and characterizations 2015,		3
35	Plasmon induced photoluminescent emission from PED AgIh alloy. <i>Research on Chemical Intermediates</i> , 2020 , 46, 3383-3396	2.8	3
34	Mineralogical influence over the presence of primordial radionuclide along the industrial corridor of northern coastal region of Chennai. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2020 , 323, 117	7-133	3
33	Catalytic activity of Bismuth Titanate. <i>Materials Today: Proceedings</i> , 2019 , 14, 553-557	1.4	2
32	Catalytic behavior of magnetic Ni🗖n alloy. Research on Chemical Intermediates, 2018, 44, 4149-4161	2.8	2
31	Effect of Co-deposited £o(HCP) and £o(FCC) on magnetic property of Co-Ni soft magnet film prepared by Pulsed Electrodeposition. <i>Materials Today: Proceedings</i> , 2018 , 5, 8761-8767	1.4	2
30	Electrochemical Behavior of Palladium Nickel Catalyst. <i>Materials Today: Proceedings</i> , 2018 , 5, 8946-894	19 1.4	2
29	Preparation, Characterization and Enhanced photocatalytic degradation of Organic pollutants using Layered Double Hydroxides. <i>Materials Today: Proceedings</i> , 2018 , 5, 8981-8985	1.4	2
28	Manganese-doped hematite nanoplates with enhanced and non-enzymatic electrochemical sensing performance. <i>Inorganic and Nano-Metal Chemistry</i> , 2017 , 47, 450-455	1.2	2
27	Synthesis of Cadmium Oxide and its Electrochemical Detection of Pollutants. <i>Advanced Materials Research</i> , 2013 , 678, 369-372	0.5	2
26	Synthesis of silver nanoparticles using Cynodon dactylon plant extract and evaluation of their antimicrobial activities and cytotoxicity 2011 ,		2
25	Preparation and characterization of Hg doped ZnO nanorods 2011,		2
24	Positron angular correlation studies on rare earth substituted 123 compounds. <i>Journal of Physics and Chemistry of Solids</i> , 1991 , 52, 1591-1594	3.9	2
23	Evanescent wave optical fibre ammonia sensor with methylamine hydroiodide. <i>IET Optoelectronics</i> , 2020 , 14, 292-295	1.5	2
22	Synthesis, Characterization and Electro catalytic activity of CuO-TiO 2. <i>Materials Today: Proceedings</i> , 2018 , 5, 8804-8807	1.4	2
21	Effect of Dendritic Cu I h Alloy on Cr(VI) Reduction Synthesized via Pulsed Electrodeposition. <i>ChemistrySelect</i> , 2018 , 3, 12613-12619	1.8	2
20	Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer. <i>Materials Research Express</i> , 2017 , 4, 075040	1.7	1

19	Synthesis, characterization and electrochemical sensing properties of Fe doped V2O5 nanoparticles 2011 ,		1
18	Preparation And Study Of Electrodeposited Silver-Nickel Binary System 2011 ,		1
17	PHOTOCATALYTIC DEGRADATION OF AQUEOUS METHYL ORANGE USING NANOTITANIA LOADED Mo-MCM-41. International Journal of Nanoscience, 2011 , 10, 1131-1135	0.6	1
16	The dielectric properties of polyindole -Zno containing LiClO4 polymer electrolyte 2012 ,		1
15	Grafted Chitosan Systems for Biomedical Applications 2019 , 385-413		1
14	Synthesis and Electrochemical Activity of Carbon-Supported Trimetallic Ir95-xPd5Ptx Nanoparticles as Bifunctional Catalysts for Oxygen Evolution/Reduction Reactions. <i>Electrocatalysis</i> , 2022 , 13, 328-337	2.7	1
13	Photocatalytic activity and optical properties of Cd 2 SnO 4 nanospheres. <i>Materials Today: Proceedings</i> , 2018 , 5, 8956-8960	1.4	O
12	Designing methanol tolerant Pt islands at Pd on carbon promoting electrocatalytic oxygen reduction reaction in acidic media. <i>Ionics</i> , 2022 , 28, 1347	2.7	O
11	CS/Au/MWCNT nanohybrid as an efficient carrier for the sustained release of 5-FU and a study of its cytotoxicity on MCF-7 <i>RSC Advances</i> , 2021 , 11, 4584-4592	3.7	О
10	Structure and Magnetic Properties of Pulsed Electrodeposited Nickellhdium Alloy. <i>Physica Status Solidi (B): Basic Research</i> , 2021 , 258, 2000563	1.3	O
9	Electrocatalytic activity of C-dots for highly sensitive detection of Uric acid. <i>Materials Today: Proceedings</i> , 2019 , 14, 545-552	1.4	
8	Effect of Sensitization on Electroless Nickel Plating of MoS2 Nanoparticles. <i>Powder Metallurgy and Metal Ceramics</i> , 2019 , 57, 703-708	0.8	
7	A systematic study on \boxminus decay chains of superheavy nuclei, Z = 126 & 138. <i>International Journal of Modern Physics E</i> , 2020 , 29, 2050034	0.7	
6	Co-Ag Nanomaterial Synthesis , Structure and Magnetic Properties. <i>Advanced Materials Research</i> , 2013 , 678, 3-6	0.5	
5	Fe2O3 and V2O5 Nanoparticles: A New Voltammetric Sensor. <i>Advanced Materials Research</i> , 2013 , 678, 331-334	0.5	
4	Electrocatalytic Property of Nano-Fe3O4 Modified Glassy Carbon Electrode. <i>Advanced Materials Research</i> , 2012 , 584, 272-275	0.5	
3	Role of Temperature in the Alpha Decay Studies of Heavy and Superheavy Nuclei. <i>Brazilian Journal of Physics</i> , 2021 , 51, 1810-1822	1.2	
2	Effect of Sensitization on Electroless Nickel Plating of MoS2 Nanoparticles. <i>Lecture Notes on Multidisciplinary Industrial Engineering</i> , 2019 , 623-631	0.3	

Peltophorum pterocarpum-derived microporous activated carbon conjugated with polycarbazole for synergistic performance in supercapacitor application. *Ionics*,1

2.7