Jean-Christophe Marine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8346280/publications.pdf

Version: 2024-02-01

IFAN-CHRISTORHE MARINE

#	Article	IF	CITATIONS
1	Epithelialâ€ŧoâ€mesenchymalâ€like transition events in melanoma. FEBS Journal, 2022, 289, 1352-1368.	2.2	54
2	The long non-coding RNA SAMMSON is essential for uveal melanoma cell survival. Oncogene, 2022, 41, 15-25.	2.6	15
3	Plexin-A4 Mediates Cytotoxic T-cell Trafficking and Exclusion in Cancer. Cancer Immunology Research, 2022, 10, 126-141.	1.6	9
4	Blockade of the proâ€fibrotic reaction mediated by the miRâ€143/â€145 cluster enhances the responses to targeted therapy in melanoma. EMBO Molecular Medicine, 2022, 14, e15295.	3.3	12
5	Cell position matters in tumour development. Nature, 2022, , .	13.7	Ο
6	PHGDH heterogeneity potentiates cancerÂcell dissemination and metastasis. Nature, 2022, 605, 747-753.	13.7	77
7	A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nature Cell Biology, 2022, 24, 940-953.	4.6	52
8	Mapping the Immune Landscape in Metastatic Melanoma Reveals Localized Cell–Cell Interactions That Predict Immunotherapy Response. Cancer Research, 2022, 82, 3275-3290.	0.4	17
9	Classification and Grading of Melanocytic Lesions in a Mouse Model of NRAS-driven Melanomagenesis. Journal of Histochemistry and Cytochemistry, 2021, 69, 203-218.	1.3	Ο
10	Long nonâ€coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Reports, 2021, 22, e50852.	2.0	21
11	CRISPR screens identify tumorâ€promoting genes conferring melanoma cell plasticity and resistance. EMBO Molecular Medicine, 2021, 13, e13466.	3.3	16
12	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	7.7	90
13	Downregulation of the FTO m6A RNA demethylase promotes EMT-mediated progression of epithelial tumors and sensitivity to Wnt inhibitors. Nature Cancer, 2021, 2, 611-628.	5.7	30
14	Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma. Journal of Experimental Medicine, 2021, 218, .	4.2	31
15	Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell, 2021, 39, 1135-1149.e8.	7.7	83
16	Enhanced chromatin accessibility contributes to X chromosome dosage compensation in mammals. Genome Biology, 2021, 22, 302.	3.8	16
17	Tyrosine-Dependent Phenotype Switching Occurs Early in Many Primary Melanoma Cultures Limiting Their Translational Value. Frontiers in Oncology, 2021, 11, 780654.	1.3	7
18	Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1204-1223.	5.7	42

JEAN-CHRISTOPHE MARINE

#	Article	IF	CITATIONS
19	Siah2 control of T-regulatory cells limits anti-tumor immunity. Nature Communications, 2020, 11, 99.	5.8	15
20	Non-genetic mechanisms of therapeutic resistance in cancer. Nature Reviews Cancer, 2020, 20, 743-756.	12.8	290
21	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	13.7	108
22	Cross-species analysis of enhancer logic using deep learning. Genome Research, 2020, 30, 1815-1834.	2.4	65
23	Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nature Cell Biology, 2020, 22, 986-998.	4.6	148
24	The EMT Transcription Factor ZEB2 Promotes Proliferation of Primary and Metastatic Melanoma While Suppressing an Invasive, Mesenchymal-Like Phenotype. Cancer Research, 2020, 80, 2983-2995.	0.4	51
25	Disseminated Melanoma Cells Transdifferentiate into Endothelial Cells in Intravascular Niches at Metastatic Sites. Cell Reports, 2020, 31, 107765.	2.9	26
26	Integrator restrains paraspeckles assembly by promoting isoform switching of the IncRNA <i>NEAT1</i> . Science Advances, 2020, 6, eaaz9072.	4.7	33
27	Targeted chemotherapy overcomes drug resistance in melanoma. Genes and Development, 2020, 34, 637-649.	2.7	25
28	A Feed-Forward Mechanosignaling Loop Confers Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutant Melanoma. Cancer Research, 2020, 80, 1927-1941.	0.4	46
29	The long noncoding RNA <i>NEAT1_1</i> is seemingly dispensable for normal tissue homeostasis and cancer cell growth. Rna, 2019, 25, 1681-1695.	1.6	39
30	Dynamic reversal of random X-Chromosome inactivation during iPSC reprogramming. Genome Research, 2019, 29, 1659-1672.	2.4	31
31	Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities. Genes and Development, 2019, 33, 1295-1318.	2.7	203
32	Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nature Communications, 2019, 10, 2723.	5.8	126
33	Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science, 2019, 366, 1029-1034.	6.0	140
34	Targeting the Sphingosine 1-Phosphate Axis Exerts Potent Antitumor Activity in BRAFi-Resistant Melanomas. Molecular Cancer Therapeutics, 2019, 18, 289-300.	1.9	25
35	TET2-Dependent Hydroxymethylome Plasticity Reduces Melanoma Initiation and Progression. Cancer Research, 2019, 79, 482-494.	0.4	20
36	Identification of the tumour transition states occurring during EMT. Nature, 2018, 556, 463-468.	13.7	1,083

#	Article	IF	CITATIONS
37	Mitochondrial MDM2 Regulates Respiratory Complex I Activity Independently of p53. Molecular Cell, 2018, 69, 594-609.e8.	4.5	68
38	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
39	Sustained activation of the Aryl hydrocarbon Receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma. Nature Communications, 2018, 9, 4775.	5.8	70
40	Combined inhibition of CDK and HDAC as a promising therapeutic strategy for both cutaneous and uveal metastatic melanoma. Oncotarget, 2018, 9, 6174-6187.	0.8	28
41	SAMMSON fosters cancer cell fitness by concertedly enhancing mitochondrial and cytosolic translation. Nature Structural and Molecular Biology, 2018, 25, 1035-1046.	3.6	84
42	Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy. Nature Communications, 2018, 9, 2500.	5.8	92
43	Toward Minimal Residual Disease-Directed Therapy in Melanoma. Cell, 2018, 174, 843-855.e19.	13.5	514
44	The Endosomal Protein CEMIP Links WNT Signaling to MEK1–ERK1/2 Activation in Selumetinib-Resistant Intestinal Organoids. Cancer Research, 2018, 78, 4533-4548.	0.4	30
45	Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature, 2018, 558, 605-609.	13.7	177
46	<scp>MDM4</scp> is a rational target for treating breast cancers with mutant p53. Journal of Pathology, 2017, 241, 661-670.	2.1	32
47	Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews Cancer, 2017, 17, 254-268.	12.8	527
48	Translation rewiring at the heart of phenotype switching in melanoma. Pigment Cell and Melanoma Research, 2017, 30, 282-283.	1.5	4
49	Deciphering the Role of Oncogenic MITFE318K in Senescence Delay and Melanoma Progression. Journal of the National Cancer Institute, 2017, 109, .	3.0	27
50	Non oding <scp>RNA</scp> s: the dark side of nuclear–mitochondrial communication. EMBO Journal, 2017, 36, 1123-1133.	3.5	105
51	A non-coding function of TYRP1 mRNA promotes melanoma growth. Nature Cell Biology, 2017, 19, 1348-1357.	4.6	73
52	SCENIC: single-cell regulatory network inference and clustering. Nature Methods, 2017, 14, 1083-1086.	9.0	3,086
53	Amplification of 1q32.1 Refines the Molecular Classification of Endometrial Carcinoma. Clinical Cancer Research, 2017, 23, 7232-7241.	3.2	37
54	Mouse Cutaneous Melanoma Induced by Mutant BRaf Arises from Expansion and Dedifferentiation of Mature Pigmented Melanocytes. Cell Stem Cell, 2017, 21, 679-693.e6.	5.2	93

JEAN-CHRISTOPHE MARINE

#	Article	IF	CITATIONS
55	The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells. Cell Death and Disease, 2017, 8, e3169-e3169.	2.7	33
56	NEAT1-containing paraspeckles: Central hubs in stress response and tumor formation. Cell Cycle, 2017, 16, 137-138.	1.3	33
57	Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. Journal of Clinical Investigation, 2017, 127, 2310-2325.	3.9	26
58	Abstract 3048: A noncoding function of TYRP1 mRNA promotes melanoma growth. Cancer Research, 2017, 77, 3048-3048.	0.4	1
59	p53 induces formation of NEAT1 IncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nature Medicine, 2016, 22, 861-868.	15.2	372
60	MDMX (MDM4), a Promising Target for p53 Reactivation Therapy and Beyond. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026237.	2.9	42
61	The emerging role of long nonâ€coding <scp>RNA</scp> s in cutaneous melanoma. Pigment Cell and Melanoma Research, 2016, 29, 619-626.	1.5	54
62	Systems biology of immunogenic cell death in melanoma. European Journal of Cancer, 2016, 61, S174-S175.	1.3	0
63	Loss of oocytes due to conditional ablation of <i>Murine double minute 2</i> (<i>Mdm2</i>) gene is p53â€dependent and results in female sterility. FEBS Letters, 2016, 590, 2566-2574.	1.3	14
64	Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53. Molecular Cell, 2016, 62, 890-902.	4.5	96
65	p53 Reactivation by PRIMA-1Met (APR-246) sensitises V600E/KBRAF melanoma to vemurafenib. European Journal of Cancer, 2016, 55, 98-110.	1.3	48
66	Melanoma addiction to the long non-coding RNA SAMMSON. Nature, 2016, 531, 518-522.	13.7	488
67	Regulation of Melanoma Progression through the TCF4/miR-125b/NEDD9 Cascade. Journal of Investigative Dermatology, 2016, 136, 1229-1237.	0.3	24
68	Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma. Oncotarget, 2016, 7, 71873-71886.	0.8	35
69	Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 2015, 6, 6683.	5.8	365
70	Different Levels of Twist1 Regulate Skin Tumor Initiation, Stemness, and Progression. Cell Stem Cell, 2015, 16, 67-79.	5.2	169
71	Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion. Cell Stem Cell, 2015, 17, 60-73.	5.2	126
72	Novel Therapies for Metastatic Melanoma: An Update on Their Use in Older Patients. Drugs and Aging, 2015, 32, 821-834.	1.3	12

#	Article	IF	CITATIONS
73	Antisense oligonucleotide–mediated MDM4 exon 6 skipping impairs tumor growth. Journal of Clinical Investigation, 2015, 126, 68-84.	3.9	138
74	Spontaneous Post-Transplant Disorders in NOD.Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) Mice Engrafted with Patient-Derived Metastatic Melanomas. PLoS ONE, 2015, 10, e0124974.	1.1	23
75	p53 attenuates AKT signaling by modulating membrane phospholipid composition. Oncotarget, 2015, 6, 21240-21254.	0.8	41
76	The lncRNA <i>Neat1</i> is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development (Cambridge), 2014, 141, 4618-4627.	1.2	229
77	iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections. PLoS Computational Biology, 2014, 10, e1003731.	1.5	787
78	Loss of autocrine endothelial-derived VEGF significantly reduces hemangiosarcoma development in conditional p53-deficient mice. Cell Cycle, 2014, 13, 1501-1507.	1.3	10
79	The long noncoding RNA Neat1 is required for mammary gland development and lactation. Rna, 2014, 20, 1844-1849.	1.6	177
80	Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression. Oncotarget, 2014, 5, 9594-9608.	0.8	35
81	The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. Developmental Biology, 2013, 373, 39-52.	0.9	37
82	Senescence Sensitivity of Breast Cancer Cells Is Defined by Positive Feedback Loop between CIP2A and E2F1. Cancer Discovery, 2013, 3, 182-197.	7.7	117
83	TPT1/ TCTP-regulated pathways in phenotypic reprogramming. Trends in Cell Biology, 2013, 23, 37-46.	3.6	116
84	The Doublesex Homolog Dmrt5 is Required for the Development of the Caudomedial Cerebral Cortex in Mammals. Cerebral Cortex, 2013, 23, 2552-2567.	1.6	58
85	Abstract 4338: Tumor reversion: From bench to potential clinical applications using sertraline and thioridazine , 2013, , .		1
86	Reciprocal repression between P53 and TCTP. Nature Medicine, 2012, 18, 91-99.	15.2	190
87	MDM4 is a key therapeutic target in cutaneous melanoma. Nature Medicine, 2012, 18, 1239-1247.	15.2	266
88	Synthetic lethality between Rb, p53 and Dicer or miR-17–92 in retinal progenitors suppresses retinoblastoma formation. Nature Cell Biology, 2012, 14, 958-965.	4.6	79
89	IGF2: The Achilles' heel of p53â€deficiency?. EMBO Molecular Medicine, 2012, 4, 688-690.	3.3	9
90	Spotlight on the role of COP1 in tumorigenesis. Nature Reviews Cancer, 2012, 12, 455-464.	12.8	94

#	Article	IF	CITATIONS
91	Abstract 4730: Inhibition of the p53-HDMX interaction sensitizes melanoma to chemotherapy. , 2012, , .		1
92	Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chemical Biology, 2011, 7, 285-295.	3.9	450
93	Functional Analysis of the p53 Pathway in Neuroblastoma Cells Using the Small-Molecule MDM2 Antagonist Nutlin-3. Molecular Cancer Therapeutics, 2011, 10, 983-993.	1.9	61
94	MDM2 and MDMX in Cancer and Development. Current Topics in Developmental Biology, 2011, 94, 45-75.	1.0	32
95	Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. Journal of Clinical Investigation, 2011, 121, 1329-1343.	3.9	108
96	Pharmacological Rescue of p53 in Cancer Therapy: Widening the Sensitive Tumor Spectrum by Targeting MDMX. Cancer Cell, 2010, 18, 399-400.	7.7	12
97	MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output. EMBO Journal, 2010, 29, 2538-2552.	3.5	52
98	Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biology, 2010, 12, 572-582.	4.6	222
99	Widespread Overexpression of Epitope-Tagged Mdm4 Does Not Accelerate Tumor Formation <i>In Vivo</i> . Molecular and Cellular Biology, 2010, 30, 5394-5405.	1.1	32
100	An Illegitimate microRNA Target Site within the 3′ UTR of <i>MDM4</i> Affects Ovarian Cancer Progression and Chemosensitivity. Cancer Research, 2010, 70, 9641-9649.	0.4	152
101	Antitumor Activity of the Selective MDM2 Antagonist Nutlin-3 Against Chemoresistant Neuroblastoma With Wild-Type p53. Journal of the National Cancer Institute, 2009, 101, 1562-1574.	3.0	105
102	c-Abl Phosphorylates Hdmx and Regulates Its Interaction with p53. Journal of Biological Chemistry, 2009, 284, 4031-4039.	1.6	60
103	Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic Acids Research, 2009, 37, e55-e55.	6.5	99
104	Transforming growth factor-beta and mutant p53 conspire to induce metastasis by antagonizing p63: a (ternary) complex affair. Breast Cancer Research, 2009, 11, 304.	2.2	7
105	Regulation of SIRT6 protein levels by nutrient availability. FEBS Letters, 2008, 582, 543-548.	1.3	153
106	A Critical Role for p53 in the Control of NF-κB-Dependent Gene Expression in TLR4-Stimulated Dendritic Cells Exposed to Genistein. Journal of Immunology, 2007, 178, 5048-5057.	0.4	76
107	The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes and Development, 2007, 21, 525-530.	2.7	775
108	Distinct roles of Mdm2 and Mdm4 in red cell production. Blood, 2007, 109, 2630-2633.	0.6	63

#	Article	IF	CITATIONS
109	Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation. Developmental Biology, 2006, 294, 203-219.	0.9	47
110	Inactivation of the p53 pathway in retinoblastoma. Nature, 2006, 444, 61-66.	13.7	550
111	Small-Molecule MDM2 Antagonists as a New Therapy Concept for Neuroblastoma. Cancer Research, 2006, 66, 9646-9655.	0.4	132
112	Evolutionarily Conserved Role of Nucleostemin: Controlling Proliferation of Stem/Progenitor Cells during Early Vertebrate Development. Molecular and Cellular Biology, 2006, 26, 9291-9301.	1.1	103
113	Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3232-3237.	3.3	236
114	G1 checkpoint failure and increased tumor susceptibility in mice lacking the novel p53 target Ptprv. EMBO Journal, 2005, 24, 3093-3103.	3.5	32
115	dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene, 2005, 24, 1461-1466.	2.6	106
116	Nucleophosmin Is Required for DNA Integrity and p19Arf Protein Stability. Molecular and Cellular Biology, 2005, 25, 8874-8886.	1.1	195
117	DNA Damage-Induced Phosphorylation of MdmX at Serine 367 Activates p53 by Targeting MdmX for Mdm2-Dependent Degradation. Molecular and Cellular Biology, 2005, 25, 9608-9620.	1.1	115
118	PTPRV is a Key Mediator of p53-Induced Cell Cycle Exit. Cell Cycle, 2005, 4, 1703-1705.	1.3	15
119	Mdmx as an essential regulator of p53 activity. Biochemical and Biophysical Research Communications, 2005, 331, 750-760.	1.0	169
120	Amplification of Mdmx (or Mdm4) Directly Contributes to Tumor Formation by Inhibiting p53 Tumor Suppressor Activity. Molecular and Cellular Biology, 2004, 24, 5835-5843.	1.1	289
121	Mdmx and Mdm2: Brothers in Arms?. Cell Cycle, 2004, 3, 898-902.	1.3	66
122	Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochemical and Biophysical Research Communications, 2004, 322, 526-534.	1.0	50
123	GSK3-Mediated BCL-3 Phosphorylation Modulates Its Degradation and Its Oncogenicity. Molecular Cell, 2004, 16, 35-45.	4.5	119
124	Critical Role for a Central Part of Mdm2 in the Ubiquitylation of p53. Molecular and Cellular Biology, 2003, 23, 4929-4938.	1.1	100
125	Hdmx Recruitment into the Nucleus by Hdm2 Is Essential for Its Ability to Regulate p53 Stability and Transactivation. Journal of Biological Chemistry, 2002, 277, 7318-7323.	1.6	68
126	Mdm4 (Mdmx) Regulates p53-Induced Growth Arrest and Neuronal Cell Death during Early Embryonic Mouse Development. Molecular and Cellular Biology, 2002, 22, 5527-5538.	1.1	279

JEAN-CHRISTOPHE MARINE

#	Article	IF	CITATIONS
127	Nucleophosmin regulates the stability and transcriptional activity of p53. Nature Cell Biology, 2002, 4, 529-533.	4.6	476
128	The Ornithine Decarboxylase Gene Is Essential for Cell Survival during Early Murine Development. Molecular and Cellular Biology, 2001, 21, 6549-6558.	1.1	217
129	Jak3 Selectively Regulates Bax and Bcl-2 Expression To Promote T-Cell Development. Molecular and Cellular Biology, 2001, 21, 678-689.	1.1	61
130	Phospholipase CÎ ³ 2 Is Essential in the Functions of B Cell and Several Fc Receptors. Immunity, 2000, 13, 25-35.	6.6	444
131	Antiapoptotic activity of <i>Stat5</i> required during terminal stages of myeloid differentiation. Genes and Development, 2000, 14, 232-244.	2.7	152
132	SOCS1 Deficiency Causes a Lymphocyte-Dependent Perinatal Lethality. Cell, 1999, 98, 609-616.	13.5	485
133	SOCS3 Is Essential in the Regulation of Fetal Liver Erythropoiesis. Cell, 1999, 98, 617-627.	13.5	339
134	Enhanced expression in seminoma of human zinc finger genes located on chromosome 19. Cancer Genetics and Cytogenetics, 1998, 100, 36-42.	1.0	8
135	Jak2 Is Essential for Signaling through a Variety of Cytokine Receptors. Cell, 1998, 93, 385-395.	13.5	987
136	A role for Xenopus Gli-type zinc finger proteins in the early embryonic patterning of mesoderm and neuroectoderm. Mechanisms of Development, 1997, 63, 211-225.	1.7	47
137	Assignment of the Human ZNF83 (HPF1) Zinc Finger Gene to Chromosome 19q13.3-q13.4. Genomics, 1994, 21, 285-286.	1.3	4
138	Localization of the human KRAB finger gene ZNF117 (HPF9) to chromosome 7q11.2. Genomics, 1992, 14, 780-781.	1.3	6