Jean-Christophe Marine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8346280/publications.pdf

Version: 2024-02-01

138 papers 24,900 citations

64 h-index 136 g-index

156 all docs

156 docs citations

156 times ranked 37932 citing authors

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
2	SCENIC: single-cell regulatory network inference and clustering. Nature Methods, 2017, 14, 1083-1086.	19.0	3,086
3	Identification of the tumour transition states occurring during EMT. Nature, 2018, 556, 463-468.	27.8	1,083
4	Jak2 Is Essential for Signaling through a Variety of Cytokine Receptors. Cell, 1998, 93, 385-395.	28.9	987
5	iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections. PLoS Computational Biology, 2014, 10, e1003731.	3.2	787
6	The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes and Development, 2007, 21, 525-530.	5.9	775
7	Inactivation of the p53 pathway in retinoblastoma. Nature, 2006, 444, 61-66.	27.8	550
8	Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews Cancer, 2017, 17, 254-268.	28.4	527
9	Toward Minimal Residual Disease-Directed Therapy in Melanoma. Cell, 2018, 174, 843-855.e19.	28.9	514
10	Melanoma addiction to the long non-coding RNA SAMMSON. Nature, 2016, 531, 518-522.	27.8	488
11	SOCS1 Deficiency Causes a Lymphocyte-Dependent Perinatal Lethality. Cell, 1999, 98, 609-616.	28.9	485
12	Nucleophosmin regulates the stability and transcriptional activity of p53. Nature Cell Biology, 2002, 4, 529-533.	10.3	476
13	Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chemical Biology, 2011, 7, 285-295.	8.0	450
14	Phospholipase \hat{Cl}^32 Is Essential in the Functions of B Cell and Several Fc Receptors. Immunity, 2000, 13, 25-35.	14.3	444
15	p53 induces formation of NEAT1 IncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nature Medicine, 2016, 22, 861-868.	30.7	372
16	Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 2015, 6, 6683.	12.8	365
17	SOCS3 Is Essential in the Regulation of Fetal Liver Erythropoiesis. Cell, 1999, 98, 617-627.	28.9	339
18	Non-genetic mechanisms of therapeutic resistance in cancer. Nature Reviews Cancer, 2020, 20, 743-756.	28.4	290

#	Article	IF	Citations
19	Amplification of Mdmx (or Mdm4) Directly Contributes to Tumor Formation by Inhibiting p53 Tumor Suppressor Activity. Molecular and Cellular Biology, 2004, 24, 5835-5843.	2.3	289
20	Mdm4 (Mdmx) Regulates p53-Induced Growth Arrest and Neuronal Cell Death during Early Embryonic Mouse Development. Molecular and Cellular Biology, 2002, 22, 5527-5538.	2.3	279
21	MDM4 is a key therapeutic target in cutaneous melanoma. Nature Medicine, 2012, 18, 1239-1247.	30.7	266
22	Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3232-3237.	7.1	236
23	The lncRNA <i>Neat1</i> is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development (Cambridge), 2014, 141, 4618-4627.	2.5	229
24	Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biology, 2010, 12, 572-582.	10.3	222
25	The Ornithine Decarboxylase Gene Is Essential for Cell Survival during Early Murine Development. Molecular and Cellular Biology, 2001, 21, 6549-6558.	2.3	217
26	Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities. Genes and Development, 2019, 33, 1295-1318.	5.9	203
27	Nucleophosmin Is Required for DNA Integrity and p19Arf Protein Stability. Molecular and Cellular Biology, 2005, 25, 8874-8886.	2.3	195
28	Reciprocal repression between P53 and TCTP. Nature Medicine, 2012, 18, 91-99.	30.7	190
29	The long noncoding RNA Neat1 is required for mammary gland development and lactation. Rna, 2014, 20, 1844-1849.	3.5	177
30	Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature, 2018, 558, 605-609.	27.8	177
31	Mdmx as an essential regulator of p53 activity. Biochemical and Biophysical Research Communications, 2005, 331, 750-760.	2.1	169
32	Different Levels of Twist1 Regulate Skin Tumor Initiation, Stemness, and Progression. Cell Stem Cell, 2015, 16, 67-79.	11.1	169
33	Regulation of SIRT6 protein levels by nutrient availability. FEBS Letters, 2008, 582, 543-548.	2.8	153
34	An Illegitimate microRNA Target Site within the 3′ UTR of <i>MDM4</i> Affects Ovarian Cancer Progression and Chemosensitivity. Cancer Research, 2010, 70, 9641-9649.	0.9	152
35	Antiapoptotic activity of <i>Stat5 </i> required during terminal stages of myeloid differentiation. Genes and Development, 2000, 14, 232-244.	5.9	152
36	Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nature Cell Biology, 2020, 22, 986-998.	10.3	148

#	Article	lF	CITATIONS
37	Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science, 2019, 366, 1029-1034.	12.6	140
38	Antisense oligonucleotide–mediated MDM4 exon 6 skipping impairs tumor growth. Journal of Clinical Investigation, 2015, 126, 68-84.	8.2	138
39	Small-Molecule MDM2 Antagonists as a New Therapy Concept for Neuroblastoma. Cancer Research, 2006, 66, 9646-9655.	0.9	132
40	Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion. Cell Stem Cell, 2015, 17, 60-73.	11.1	126
41	Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nature Communications, 2019, 10, 2723.	12.8	126
42	GSK3-Mediated BCL-3 Phosphorylation Modulates Its Degradation and Its Oncogenicity. Molecular Cell, 2004, 16, 35-45.	9.7	119
43	Senescence Sensitivity of Breast Cancer Cells Is Defined by Positive Feedback Loop between CIP2A and E2F1. Cancer Discovery, 2013, 3, 182-197.	9.4	117
44	TPT1/TCTP-regulated pathways in phenotypic reprogramming. Trends in Cell Biology, 2013, 23, 37-46.	7.9	116
45	DNA Damage-Induced Phosphorylation of MdmX at Serine 367 Activates p53 by Targeting MdmX for Mdm2-Dependent Degradation. Molecular and Cellular Biology, 2005, 25, 9608-9620.	2.3	115
46	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
47	Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. Journal of Clinical Investigation, 2011, 121, 1329-1343.	8.2	108
48	dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene, 2005, 24, 1461-1466.	5.9	106
49	Antitumor Activity of the Selective MDM2 Antagonist Nutlin-3 Against Chemoresistant Neuroblastoma With Wild-Type p53. Journal of the National Cancer Institute, 2009, 101, 1562-1574.	6.3	105
50	Nonâ€coding <scp>RNA</scp> s: the dark side of nuclear–mitochondrial communication. EMBO Journal, 2017, 36, 1123-1133.	7.8	105
51	Evolutionarily Conserved Role of Nucleostemin: Controlling Proliferation of Stem/Progenitor Cells during Early Vertebrate Development. Molecular and Cellular Biology, 2006, 26, 9291-9301.	2.3	103
52	Critical Role for a Central Part of Mdm2 in the Ubiquitylation of p53. Molecular and Cellular Biology, 2003, 23, 4929-4938.	2.3	100
53	Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic Acids Research, 2009, 37, e55-e55.	14.5	99
54	Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53. Molecular Cell, 2016, 62, 890-902.	9.7	96

#	Article	IF	CITATIONS
55	Spotlight on the role of COP1 in tumorigenesis. Nature Reviews Cancer, 2012, 12, 455-464.	28.4	94
56	Mouse Cutaneous Melanoma Induced by Mutant BRaf Arises from Expansion and Dedifferentiation of Mature Pigmented Melanocytes. Cell Stem Cell, 2017, 21, 679-693.e6.	11,1	93
57	Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy. Nature Communications, 2018, 9, 2500.	12.8	92
58	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
59	SAMMSON fosters cancer cell fitness by concertedly enhancing mitochondrial and cytosolic translation. Nature Structural and Molecular Biology, 2018, 25, 1035-1046.	8.2	84
60	Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell, 2021, 39, 1135-1149.e8.	16.8	83
61	Synthetic lethality between Rb, p53 and Dicer or miR-17–92 in retinal progenitors suppresses retinoblastoma formation. Nature Cell Biology, 2012, 14, 958-965.	10.3	79
62	PHGDH heterogeneity potentiates cancerÂcell dissemination and metastasis. Nature, 2022, 605, 747-753.	27.8	77
63	A Critical Role for p53 in the Control of NF-κB-Dependent Gene Expression in TLR4-Stimulated Dendritic Cells Exposed to Genistein. Journal of Immunology, 2007, 178, 5048-5057.	0.8	76
64	A non-coding function of TYRP1 mRNA promotes melanoma growth. Nature Cell Biology, 2017, 19, 1348-1357.	10.3	73
65	Sustained activation of the Aryl hydrocarbon Receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma. Nature Communications, 2018, 9, 4775.	12.8	70
66	Hdmx Recruitment into the Nucleus by Hdm2 Is Essential for Its Ability to Regulate p53 Stability and Transactivation. Journal of Biological Chemistry, 2002, 277, 7318-7323.	3.4	68
67	Mitochondrial MDM2 Regulates Respiratory Complex I Activity Independently of p53. Molecular Cell, 2018, 69, 594-609.e8.	9.7	68
68	Mdmx and Mdm2: Brothers in Arms?. Cell Cycle, 2004, 3, 898-902.	2.6	66
69	Cross-species analysis of enhancer logic using deep learning. Genome Research, 2020, 30, 1815-1834.	5.5	65
70	Distinct roles of Mdm2 and Mdm4 in red cell production. Blood, 2007, 109, 2630-2633.	1.4	63
71	Jak3 Selectively Regulates Bax and Bcl-2 Expression To Promote T-Cell Development. Molecular and Cellular Biology, 2001, 21, 678-689.	2.3	61
72	Functional Analysis of the p53 Pathway in Neuroblastoma Cells Using the Small-Molecule MDM2 Antagonist Nutlin-3. Molecular Cancer Therapeutics, 2011, 10, 983-993.	4.1	61

#	Article	lF	Citations
73	c-Abl Phosphorylates Hdmx and Regulates Its Interaction with p53. Journal of Biological Chemistry, 2009, 284, 4031-4039.	3.4	60
74	The Doublesex Homolog Dmrt5 is Required for the Development of the Caudomedial Cerebral Cortex in Mammals. Cerebral Cortex, 2013, 23, 2552-2567.	2.9	58
7 5	The emerging role of long nonâ€coding <scp>RNA</scp> s in cutaneous melanoma. Pigment Cell and Melanoma Research, 2016, 29, 619-626.	3.3	54
76	Epithelialâ€ŧoâ€mesenchymalâ€ŀike transition events in melanoma. FEBS Journal, 2022, 289, 1352-1368.	4.7	54
77	MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output. EMBO Journal, 2010, 29, 2538-2552.	7.8	52
78	A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nature Cell Biology, 2022, 24, 940-953.	10.3	52
79	The EMT Transcription Factor ZEB2 Promotes Proliferation of Primary and Metastatic Melanoma While Suppressing an Invasive, Mesenchymal-Like Phenotype. Cancer Research, 2020, 80, 2983-2995.	0.9	51
80	Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochemical and Biophysical Research Communications, 2004, 322, 526-534.	2.1	50
81	p53 Reactivation by PRIMA-1Met (APR-246) sensitises V600E/KBRAF melanoma to vemurafenib. European Journal of Cancer, 2016, 55, 98-110.	2.8	48
82	A role for Xenopus Gli-type zinc finger proteins in the early embryonic patterning of mesoderm and neuroectoderm. Mechanisms of Development, 1997, 63, 211-225.	1.7	47
83	Evil is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation. Developmental Biology, 2006, 294, 203-219.	2.0	47
84	A Feed-Forward Mechanosignaling Loop Confers Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutant Melanoma. Cancer Research, 2020, 80, 1927-1941.	0.9	46
85	MDMX (MDM4), a Promising Target for p53 Reactivation Therapy and Beyond. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026237.	6.2	42
86	Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1204-1223.	13.2	42
87	p53 attenuates AKT signaling by modulating membrane phospholipid composition. Oncotarget, 2015, 6, 21240-21254.	1.8	41
88	The long noncoding RNA <i>NEAT1$_1$</i> is seemingly dispensable for normal tissue homeostasis and cancer cell growth. Rna, 2019, 25, 1681-1695.	3.5	39
89	The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. Developmental Biology, 2013, 373, 39-52.	2.0	37
90	Amplification of 1q32.1 Refines the Molecular Classification of Endometrial Carcinoma. Clinical Cancer Research, 2017, 23, 7232-7241.	7.0	37

#	Article	IF	CITATIONS
91	Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma. Oncotarget, 2016, 7, 71873-71886.	1.8	35
92	Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression. Oncotarget, 2014, 5, 9594-9608.	1.8	35
93	The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells. Cell Death and Disease, 2017, 8, e3169-e3169.	6.3	33
94	NEAT1-containing paraspeckles: Central hubs in stress response and tumor formation. Cell Cycle, 2017, 16, 137-138.	2.6	33
95	Integrator restrains paraspeckles assembly by promoting isoform switching of the IncRNA <i>NEAT1</i> . Science Advances, 2020, 6, eaaz9072.	10.3	33
96	G1 checkpoint failure and increased tumor susceptibility in mice lacking the novel p53 target Ptprv. EMBO Journal, 2005, 24, 3093-3103.	7.8	32
97	Widespread Overexpression of Epitope-Tagged Mdm4 Does Not Accelerate Tumor Formation <i>ln Vivo</i> . Molecular and Cellular Biology, 2010, 30, 5394-5405.	2.3	32
98	MDM2 and MDMX in Cancer and Development. Current Topics in Developmental Biology, 2011, 94, 45-75.	2.2	32
99	<scp>MDM4</scp> is a rational target for treating breast cancers with mutant p53. Journal of Pathology, 2017, 241, 661-670.	4.5	32
100	Dynamic reversal of random X-Chromosome inactivation during iPSC reprogramming. Genome Research, 2019, 29, 1659-1672.	5 . 5	31
101	Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma. Journal of Experimental Medicine, 2021, 218, .	8.5	31
102	The Endosomal Protein CEMIP Links WNT Signaling to MEK1–ERK1/2 Activation in Selumetinib-Resistant Intestinal Organoids. Cancer Research, 2018, 78, 4533-4548.	0.9	30
103	Downregulation of the FTO m6A RNA demethylase promotes EMT-mediated progression of epithelial tumors and sensitivity to Wnt inhibitors. Nature Cancer, 2021, 2, 611-628.	13.2	30
104	Combined inhibition of CDK and HDAC as a promising therapeutic strategy for both cutaneous and uveal metastatic melanoma. Oncotarget, 2018, 9, 6174-6187.	1.8	28
105	Deciphering the Role of Oncogenic MITFE318K in Senescence Delay and Melanoma Progression. Journal of the National Cancer Institute, 2017, 109, .	6.3	27
106	Disseminated Melanoma Cells Transdifferentiate into Endothelial Cells in Intravascular Niches at Metastatic Sites. Cell Reports, 2020, 31, 107765.	6.4	26
107	Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. Journal of Clinical Investigation, 2017, 127, 2310-2325.	8.2	26
108	Targeting the Sphingosine 1-Phosphate Axis Exerts Potent Antitumor Activity in BRAFi-Resistant Melanomas. Molecular Cancer Therapeutics, 2019, 18, 289-300.	4.1	25

#	Article	IF	CITATIONS
109	Targeted chemotherapy overcomes drug resistance in melanoma. Genes and Development, 2020, 34, 637-649.	5.9	25
110	Regulation of Melanoma Progression through the TCF4/miR-125b/NEDD9 Cascade. Journal of Investigative Dermatology, 2016, 136, 1229-1237.	0.7	24
111	Spontaneous Post-Transplant Disorders in NOD.Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) Mice Engrafted with Patient-Derived Metastatic Melanomas. PLoS ONE, 2015, 10, e0124974.	2.5	23
112	Long nonâ€coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Reports, 2021, 22, e50852.	4.5	21
113	TET2-Dependent Hydroxymethylome Plasticity Reduces Melanoma Initiation and Progression. Cancer Research, 2019, 79, 482-494.	0.9	20
114	Mapping the Immune Landscape in Metastatic Melanoma Reveals Localized Cell–Cell Interactions That Predict Immunotherapy Response. Cancer Research, 2022, 82, 3275-3290.	0.9	17
115	CRISPR screens identify tumorâ€promoting genes conferring melanoma cell plasticity and resistance. EMBO Molecular Medicine, 2021, 13, e13466.	6.9	16
116	Enhanced chromatin accessibility contributes to X chromosome dosage compensation in mammals. Genome Biology, 2021, 22, 302.	8.8	16
117	PTPRV is a Key Mediator of p53-Induced Cell Cycle Exit. Cell Cycle, 2005, 4, 1703-1705.	2.6	15
118	Siah2 control of T-regulatory cells limits anti-tumor immunity. Nature Communications, 2020, 11, 99.	12.8	15
119	The long non-coding RNA SAMMSON is essential for uveal melanoma cell survival. Oncogene, 2022, 41, 15-25.	5.9	15
120	Loss of oocytes due to conditional ablation of <i>Murine double minute 2</i> (<i>Mdm2</i>) gene is p53â€dependent and results in female sterility. FEBS Letters, 2016, 590, 2566-2574.	2.8	14
121	Pharmacological Rescue of p53 in Cancer Therapy: Widening the Sensitive Tumor Spectrum by Targeting MDMX. Cancer Cell, 2010, 18, 399-400.	16.8	12
122	Novel Therapies for Metastatic Melanoma: An Update on Their Use in Older Patients. Drugs and Aging, 2015, 32, 821-834.	2.7	12
123	Blockade of the proâ€fibrotic reaction mediated by the miRâ€143/â€145 cluster enhances the responses to targeted therapy in melanoma. EMBO Molecular Medicine, 2022, 14, e15295.	6.9	12
124	Loss of autocrine endothelial-derived VEGF significantly reduces hemangiosarcoma development in conditional p53-deficient mice. Cell Cycle, 2014, 13, 1501-1507.	2.6	10
125	IGF2: The Achilles' heel of p53â€deficiency?. EMBO Molecular Medicine, 2012, 4, 688-690.	6.9	9
126	Plexin-A4 Mediates Cytotoxic T-cell Trafficking and Exclusion in Cancer. Cancer Immunology Research, 2022, 10, 126-141.	3.4	9

#	Article	IF	CITATIONS
127	Enhanced expression in seminoma of human zinc finger genes located on chromosome 19. Cancer Genetics and Cytogenetics, 1998, 100, 36-42.	1.0	8
128	Transforming growth factor-beta and mutant p53 conspire to induce metastasis by antagonizing p63: a (ternary) complex affair. Breast Cancer Research, 2009, 11 , 304.	5.0	7
129	Tyrosine-Dependent Phenotype Switching Occurs Early in Many Primary Melanoma Cultures Limiting Their Translational Value. Frontiers in Oncology, 2021, 11, 780654.	2.8	7
130	Localization of the human KRAB finger gene ZNF117 (HPF9) to chromosome 7q11.2. Genomics, 1992, 14, 780-781.	2.9	6
131	Assignment of the Human ZNF83 (HPF1) Zinc Finger Gene to Chromosome 19q13.3-q13.4. Genomics, 1994, 21, 285-286.	2.9	4
132	Translation rewiring at the heart of phenotype switching in melanoma. Pigment Cell and Melanoma Research, 2017, 30, 282-283.	3.3	4
133	Abstract 4730: Inhibition of the p53-HDMX interaction sensitizes melanoma to chemotherapy., 2012,,.		1
134	Abstract 4338: Tumor reversion: From bench to potential clinical applications using sertraline and thioridazine , 2013, , .		1
135	Abstract 3048: A noncoding function of TYRP1 mRNA promotes melanoma growth. Cancer Research, 2017, 77, 3048-3048.	0.9	1
136	Systems biology of immunogenic cell death in melanoma. European Journal of Cancer, 2016, 61, S174-S175.	2.8	0
137	Classification and Grading of Melanocytic Lesions in a Mouse Model of NRAS-driven Melanomagenesis. Journal of Histochemistry and Cytochemistry, 2021, 69, 203-218.	2.5	0
138	Cell position matters in tumour development. Nature, 2022, , .	27.8	0