
Christian Willberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8346251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peridynamic Simulation of a Mixed-Mode Fracture Experiment in PMMA Utilizing an Adaptive-Time Stepping for an Explicit Solver. Journal of Peridynamics and Nonlocal Modeling, 2023, 5, 205-228.	2.9	3
2	Validation of a 20 m Wind Turbine Blade Model. Energies, 2021, 14, 2451.	3.1	2
3	Evaluation of manufacturing deviations of composite materials. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000345.	0.2	3
4	Guided Waves for Damage Detection in Complex Composite Structures: The Influence of Omega Stringer and Different Reference Damage Size. Applied Sciences (Switzerland), 2020, 10, 3068.	2.5	23
5	A mode-dependent energy-based damage model for peridynamics and its implementation. Journal of Mechanics of Materials and Structures, 2019, 14, 193-217.	0.6	14
6	Manufacturing-Induced Imperfections in Composite Parts Manufactured via Automated Fiber Placement. Journal of Composites Science, 2019, 3, 56.	3.0	80
7	Verification and Validation of a 2D energy based peridynamic stateâ€based failure criterion. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900331.	0.2	1
8	Peridynamic analysis of fibre-matrix debond and matrix failure mechanisms in composites under transverse tensile load by an energy-based damage criterion. Composites Part B: Engineering, 2019, 158, 18-27.	12.0	21
9	Estimation of airframe weight reduction by integration of piezoelectric and guided wave–based structural health monitoring. Structural Health Monitoring, 2019, 18, 1778-1788.	7.5	15
10	An energy based peridynamic stateâ€based failure criterion. Proceedings in Applied Mathematics and Mechanics, 2018, 18, e201800074.	0.2	3
11	Automated sizing of a composite wing for the usage within a multidisciplinary design process. Aircraft Engineering and Aerospace Technology, 2016, 88, 303-310.	0.8	3
12	Automated model generation and sizing of aircraft structures. Aircraft Engineering and Aerospace Technology, 2016, 88, 268-276.	0.8	9
13	Analysis of the dynamical behavior of piezoceramic actuators using piezoelectric isogeometric finite elements. Advances in Computational Design, 2016, 1, 37-60.	0.3	2
14	Virtual sensors for SHM using isogeometric piezoelectric finite elements. International Journal of Structural Integrity, 2015, 6, 704-713.	3.3	2
15	Characterization of the guided wave propagation in simplified foam, honeycomb and hollow sphere structures. Composites Part B: Engineering, 2014, 56, 553-566.	12.0	25
16	Increasing the scanning range of Lamb wave based SHM systems by optimizing the actuator–sensor design. CEAS Aeronautical Journal, 2013, 4, 87-98.	1.7	9
17	Experimental and Theoretical Analysis of Lamb Wave Generation by Piezoceramic Actuators for Structural Health Monitoring. Experimental Mechanics, 2012, 52, 429-438.	2.0	32
18	Increasing the scanning range of Lamb wave based SHM systems by optimizing the sensor design and excitation frequency. Proceedings in Applied Mathematics and Mechanics, 2011, 11, 625-626.	0.2	0

CHRISTIAN WILLBERG

#	Article	IF	CITATIONS
19	Real-time FEM for the Virtual Surgery of Soft Tissues. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 173-174.	0.2	Ο
20	Simulation of Piezoelectric Induced Lamb Waves in Plates. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 503-504.	0.2	8
21	Lamb wave propagation using Wave Finite Element Method. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 509-510.	0.2	2
22	Development, Validation and Comparison of Higher Order Finite Element Approaches to Compute the Propagation of Lamb Waves Efficiently. Key Engineering Materials, 0, 518, 95-105.	0.4	22
23	The Phenomenon of Continuous Mode Conversion of Lamb Waves in CFRP Plates. Key Engineering Materials, 0, 518, 364-374.	0.4	10