Sébastien Floquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8345896/publications.pdf

Version: 2024-02-01

49 papers

1,443 citations

304743 22 h-index 330143 37 g-index

49 all docs 49 docs citations

times ranked

49

1354 citing authors

#	Article	IF	CITATIONS
1	Screening of biological properties of MoV2O2S2- and MoV2O4-based coordination complexes: Investigation of antibacterial, antifungal, antioxidative and antitumoral activities versus growing of Spirulina platensis biomass. Journal of Inorganic Biochemistry, 2022, 226, 111627.	3.5	6
2	Recent Achievements on Functionalization within closoâ€Decahydrodecaborate [B ₁₀ H ₁₀] ^{2â^²} Clusters. ChemistrySelect, 2022, 7, .	1.5	15
3	A decatungstate-based ionic liquid exhibiting a very low dielectric constant suitable for acting as a solvent and a catalyst for the oxidation of organic substrates. New Journal of Chemistry, 2021, 45, 9751-9755.	2.8	4
4	Synthesis, Physical Properties and Application of a Series of New Polyoxometalate-Based Ionic Liquids. Molecules, 2021, 26, 496. Molecules, 2021, 70, 416. of the [SIWkmml:math]	3.8	5
5	xmins:mmi="http://www.w3.org/1998/Math/MathML"> <mmi:msub><mmi:mrow /><mml:mn>10</mml:mn>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td></td><td></td></mml:mrow<></mml:msub></mml:math </mmi:mrow </mmi:msub>		

#	Article	IF	CITATIONS
19	Two Compartmentalized Inner Receptors for the Tetramethylammonium Guest within a Keplerate-Type Capsule. Inorganic Chemistry, 2016, 55, 9368-9376.	4.0	12
20	Tunable Keplerate Typeâ€Cluster "Mo ₁₃₂ ―Cavity with Dicarboxylate Anions. Chemistry - A European Journal, 2015, 21, 13311-13320.	3.3	32
21	Synthesis, Characterization and Study of Liquid Crystals Based on the Ionic Association of the Keplerate Anion [Mo132O372(CH3COO)30(H2O)72]42â° and Imidazolium Cations. Inorganics, 2015, 3, 246-266.	2.7	11
22	Hydrophobic Effect as a Driving Force for Host–Guest Chemistry of a Multi-Receptor Keplerate-Type Capsule. Journal of the American Chemical Society, 2015, 137, 5845-5851.	13.7	42
23	Synthesis, characterization, and tuning of the liquid crystal properties of ionic materials based on the cyclic polyoxothiometalate [{Mo ₄ O ₄ S ₄ (H ₂ O) ₃ (OH) ₂ } ₂ Soft Matter. 2015. 11. 1087-1099.	2.7 (P<	< \$\frac{15}{25} \rightarrow 8 < \s\ \limes 15
24	Crystal and molecular structure of dicesium bis(malonato)-di-ν-sulphido-bis[oxomolybdate(V)] dihydrate: Cs2[Mo2O2S2(malonate)2(H2O)2]Â-2H2O. Journal of Structural Chemistry, 2014, 55, 1419-1425.	1.0	0
25	Tracking "Apolar―NMe ₄ ⁺ Ions within Two Polyoxothiomolybdates that Have the Same Pores: Smaller Clathrate and Larger Highly Porous Clusters in Action. Chemistry - A European Journal, 2014, 20, 3097-3105.	3.3	14
26	Linking the Inner Isophtalate Guests Within Hexadeca-Oxothiomolybdenum Cyclic Arrangements. Synthesis, Structures and Stability in Solution. Journal of Cluster Science, 2014, 25, 811-823.	3.3	3
27	Layered ionic liquid-crystalline organisations built from nano-capsules [Mo132O312S60(SO4)x(H2O)132â^'2x](12 + 2x)â^'and DODA+cations. Liquid Crystals, 2014, 41, 1000-1007.	2.2	14
28	Tuning the electrocatalytic hydrogen evolution reaction promoted by [Mo2O2S2]-based molybdenum cycles in aqueous medium. Dalton Transactions, 2013, 42, 4848.	3.3	31
29	Evidence of ionic liquid crystal properties for a DODA+ salt of the keplerate [Mo132O372(CH3COO)30(H2O)72]42â^'. New Journal of Chemistry, 2012, 36, 865.	2.8	37
30	A building block strategy to access sulfur-functionalized polyoxometalate based systems using {Mo2S2O2} and {Mo3S4} as constitutional units, linkers or templates. Chemical Society Reviews, 2012, 41, 7335.	38.1	96
31	Cubic Box versus Spheroidal Capsule Built from Defect and Intact Pentagonal Units. Journal of the American Chemical Society, 2012, 134, 19342-19345.	13.7	59
32	Syntheses, characterizations and properties of [Mo2O2S2]-based oxothiomolybdenum wheels incorporating bisphosphonate ligands. Dalton Transactions, 2012, 41, 9955.	3.3	23
33	Oxothiomolybdenum Derivatives of the Superlacunary Crown Heteropolyanion {P ₈ W ₄₈ }: Structure of [K ₄ {Mo ₄ O ₄ S ₄ (H ₂ O) ₃ (OH) _{2 and Studies in Solution, Inorganic Chemistry, 2012, 51, 2349-2358.}	2.4.0 2.}<	รนี้ ว ี>2
34	Polyoxometalates Paneling through {Mo ₂ O ₂ S ₂ } Coordination: Cation-Directed Conformations and Chemistry of a Supramolecular Hexameric Scaffold. Journal of the American Chemical Society, 2012, 134, 1724-1737.	13.7	67
35	Capture of the Complex [Ni(dto) ₂] ^{2â€"} (dto ^{2â€"} = Dithiooxalato) Tj ETQo	1 1 0.784 4.0	1314 rgBT /(29
36	A Decade of Oxothiomolybdenum Wheels: Synthesis, Behavior in Solution, and Electrocatalytic Properties. Israel Journal of Chemistry, 2011, 51, 290-302.	2.3	34

#	Article	lF	CITATIONS
37	Synthesis, Structure, and Behavior in Solution of the Dawson Thio Derivative [(P2W17O61)2(H4Mo4S4O6)]16 European Journal of Inorganic Chemistry, 2011, 2011, 3523-3528.	2.0	7
38	A New Oxomolybdate Component Extracted from the "Virtual Dynamic Library―Yielding the Macrocyclic Anion [(MoVl8O28)4(MoV2O2S2)4]24â^². Inorganic Chemistry, 2010, 49, 9740-9742.	4.0	18
39	Capture of the [Mo ₃ S ₄] ⁴⁺ Cluster within a {Mo ₁₈ } Macrocycle Yielding a Supramolecular Assembly Stabilized by a Dynamic H-Bond Network. Journal of the American Chemical Society, 2010, 132, 2069-2077.	13.7	53
40	A wide family of pyridoxal thiosemicarbazone ferric complexes: Syntheses, structures and magnetic properties. Inorganica Chimica Acta, 2009, 362, 56-64.	2.4	31
41	Dynamic Properties of a Hexadecamolybdenum Wheel: Studies in Solution and Density Functional Theory Calculations. Inorganic Chemistry, 2009, 48, 6852-6859.	4.0	9
42	Molecular Weights of Cyclic and Hollow Clusters Measured by DOSY NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 17254-17259.	13.7	82
43	Tuning the thermodynamic stability of oxothiomolybdenum wheels: crystal structures, studies in solution and DFT calculations. Dalton Transactions, 2008, , 4565.	3.3	23
44	A New Class of Efficient Electrocatalysts for the Reduction of Protons into Hydrogen Based on the $[Mo2022]2+ Building Block. Journal of Physical Chemistry C, 2008, 112, 1109-1114.$	3.1	42
45	Host–guest adaptability within oxothiomolybdenum wheels: structures, studies in solution and DFT calculations. Dalton Transactions, 2007, , 3043-3054.	3.3	37
46	Structure, Formation, and Dynamics of Mo12 and Mo16 Oxothiomolybdenum Rings Containing Terephtalate Derivatives. Chemistry - A European Journal, 2007, 13, 3548-3557.	3.3	42
47	The crystallographic phase transition for a ferric thiosemicarbazone spin crossover complex studied by X-ray powder diffraction. New Journal of Chemistry, 2006, 30, 1621-1627.	2.8	38
48	Spin transition with a large thermal hysteresis near room temperature in a water solvate of an iron(iii) thiosemicarbazone complex. New Journal of Chemistry, 2003, 27, 341.	2.8	52
49	Synthesis, Structures, and Solution Studies of a New Class of [Mo ₂ O ₂ S ₂]-Based Thiosemicarbazone Coordination Complexes. ACS Omega, 0, , .	3.5	5